ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/rayinit.cal
Revision: 2.18
Committed: Fri Nov 30 18:43:57 2018 UTC (5 years, 4 months ago) by greg
Branch: MAIN
Changes since 2.17: +22 -1 lines
Log Message:
Added local hemisphere orientation via up-vector for *func & *data primitives

File Contents

# User Rev Content
1 greg 2.18 { RCSid $Id: rayinit.cal,v 2.17 2018/01/18 19:43:43 greg Exp $ }
2 greg 1.1 {
3     Initialization file for Radiance.
4    
5     The following are predefined:
6    
7     Dx, Dy, Dz - ray direction
8     Nx, Ny, Nz - surface normal
9     Px, Py, Pz - intersection point
10     T - distance from start
11 greg 2.3 Ts - single ray (shadow) distance
12 greg 1.1 Rdot - ray dot product
13     S - world scale
14     Tx, Ty, Tz - world origin
15     Ix, Iy, Iz - world i unit vector
16     Jx, Jy, Jz - world j unit vector
17     Kx, Ky, Kz - world k unit vector
18     arg(n) - real arguments, arg(0) is count
19 greg 2.14
20     For mesh objects, the following are available:
21    
22     Lu, Lv - local (u,v) coordinates
23 greg 1.1
24 greg 2.15 For *func & *data materials, the following are also available:
25 greg 1.1
26     NxP, NyP, NzP - perturbed surface normal
27     RdotP - perturbed ray dot product
28     CrP, CgP, CbP - perturbed material color
29    
30 greg 2.9 For prism1 and prism2 types, the following are available:
31    
32     DxA, DyA, DzA - direction to target light source
33    
34 greg 1.1 Library functions:
35    
36     if(a, b, c) - if a positive, return b, else c
37    
38     select(N, a1, a2, ..) - return aN
39    
40     sqrt(x) - square root function
41    
42     sin(x), cos(x), tan(x),
43     asin(x), acos(x),
44 greg 2.15 atan(x), atan2(y,x) - standard trig functions (radians)
45 greg 1.1
46     floor(x), ceil(x) - g.l.b. & l.u.b.
47    
48     exp(x), log(x), log10(x) - exponent and log functions
49    
50     erf(z), erfc(z) - error functions
51    
52     rand(x) - pseudo-random function (0 to 1)
53    
54 greg 2.11 noise3(x,y,z), noise3x(x,y,z),
55     noise3y(x,y,z), noise3z(x,y,z) - noise function with gradient (-1 to 1)
56 greg 1.1
57     fnoise3(x,y,z) - fractal noise function (-1 to 1)
58     }
59    
60     { Backward compatibility }
61     AC = arg(0);
62     A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
63     A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);
64    
65 greg 2.11 noise3a(x,y,z) : noise3x(x,y,z);
66     noise3b(x,y,z) : noise3y(x,y,z);
67     noise3c(x,y,z) : noise3z(x,y,z);
68    
69 greg 1.1 { Forward compatibility (?) }
70     D(i) = select(i, Dx, Dy, Dz);
71     N(i) = select(i, Nx, Ny, Nz);
72     P(i) = select(i, Px, Py, Pz);
73 greg 2.11 noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z));
74 greg 1.1
75     { More robust versions of library functions }
76     bound(a,x,b) : if(a-x, a, if(x-b, b, x));
77     Acos(x) : acos(bound(-1,x,1));
78     Asin(x) : asin(bound(-1,x,1));
79 greg 2.8 Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0);
80 greg 2.2 Exp(x) : if(-x-100, 0, exp(x));
81 greg 1.1 Sqrt(x) : if(x, sqrt(x), 0);
82    
83     { Useful constants }
84     PI : 3.14159265358979323846;
85     DEGREE : PI/180;
86     FTINY : 1e-7;
87    
88     { Useful functions }
89     and(a,b) : if( a, b, a );
90     or(a,b) : if( a, a, b );
91     not(a) : if( a, -1, 1 );
92 greg 2.13 xor(a,b) : if( a, not(b), b );
93 greg 1.1 abs(x) : if( x, x, -x );
94     sgn(x) : if( x, 1, if(-x, -1, 0) );
95     sq(x) : x*x;
96     max(a,b) : if( a-b, a, b );
97     min(a,b) : if( a-b, b, a );
98     inside(a,x,b) : and(x-a,b-x);
99     frac(x) : x - floor(x);
100     mod(n,d) : n - floor(n/d)*d;
101     tri(n,d) : abs( d - mod(n-d,2*d) );
102     linterp(t,p0,p1) : (1-t)*p0 + t*p1;
103    
104 gwlarson 2.12 noop(v) : v;
105     clip(v) : bound(0,v,1);
106     noneg(v) : if(v,v,0);
107     red(r,g,b) : if(r,r,0);
108     green(r,g,b) : if(g,g,0);
109     blue(r,g,b) : if(b,b,0);
110     grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b);
111     clip_r(r,g,b) : bound(0,r,1);
112     clip_g(r,g,b) : bound(0,g,1);
113     clip_b(r,g,b) : bound(0,b,1);
114     clipgrey(r,g,b) : min(grey(r,g,b),1);
115 greg 1.1
116     dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
117     cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2),
118     v1(3)*v2(1) - v1(1)*v2(3),
119     v1(1)*v2(2) - v1(2)*v2(1));
120    
121 gwlarson 2.12 fade(near_val,far_val,dist) : far_val +
122 greg 1.1 if (16-dist, (near_val-far_val)/(1+dist*dist), 0);
123    
124 greg 2.16 hermite(p0,p1,r0,r1,t) : p0 * ((2*t-3)*t*t+1) +
125     p1 * (-2*t+3)*t*t +
126     r0 * (((t-2)*t+1)*t) +
127     r1 * ((t-1)*t*t);
128    
129 gwlarson 2.12 bezier(p1, p2, p3, p4, t) : p1 * (1+t*(-3+t*(3-t))) +
130 greg 1.1 p2 * 3*t*(1+t*(-2+t)) +
131     p3 * 3*t*t*(1-t) +
132     p4 * t*t*t ;
133    
134 gwlarson 2.12 bspline(pp, p0, p1, pn, t) : pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
135 greg 1.1 p0 * (2/3+t*t*(-1+.5*t)) +
136     p1 * (1/6+t*(.5+t*(.5-.5*t))) +
137     pn * (1/6*t*t*t) ;
138    
139 gwlarson 2.12 turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
140 greg 1.1 turbulence(x,y,z,2*s) );
141 gwlarson 2.12 turbulencex(x,y,z,s) : if( s-1.01, 0,
142 greg 2.11 sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) +
143 gwlarson 2.12 turbulencex(x,y,z,2*s) );
144     turbulencey(x,y,z,s) : if( s-1.01, 0,
145 greg 2.11 sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) +
146 gwlarson 2.12 turbulencey(x,y,z,2*s) );
147     turbulencez(x,y,z,s) : if( s-1.01, 0,
148 greg 2.11 sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) +
149 gwlarson 2.12 turbulencez(x,y,z,2*s) );
150 greg 1.2
151 greg 1.3 { Normal distribution from uniform range (0,1) }
152    
153 greg 2.17 un2`P.(t) : t - (2.515517+t*(.802853+t*.010328))/
154 greg 1.3 (1+t*(1.432788+t*(.189269+t*.001308))) ;
155 greg 2.17 un1`P.(p) : un2`P.(sqrt(-2*log(p))) ;
156 greg 1.3
157 greg 2.17 unif2norm(p) : if( .5-p, -un1`P.(p), un1`P.(1-p) ) ;
158 greg 1.3
159     nrand(x) = unif2norm(rand(x));
160    
161 greg 1.2 { Local (u,v) coordinates for planar surfaces }
162 greg 2.17 crosslen`P. = Nx*Nx + Ny*Ny;
163 greg 2.7 { U is distance from projected Z-axis }
164 greg 2.17 U = if( crosslen`P. - FTINY,
165     (Py*Nx - Px*Ny)/crosslen`P.,
166 greg 1.2 Px);
167     { V is defined so that N = U x V }
168 greg 2.17 V = if( crosslen`P. - FTINY,
169     Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P.,
170 greg 1.2 Py);
171 greg 2.18
172     { Local hemisphere direction for *func & *data types }
173     { last 3 real args = unnormalized up-vector }
174     Vux`P. = arg(AC-1)*NzP - arg(AC)*NyP;
175     Vuy`P. = arg(AC)*NxP - arg(AC-2)*NzP;
176     Vuz`P. = arg(AC-2)*NyP - arg(AC-1)*NxP;
177     vnorm`P. = 1/sqrt(Vux`P.*Vux`P. + Vuy`P.*Vuy`P. + Vuz`P.*Vuz`P.);
178     Vnx`P. = Vux`P.*vnorm`P.;
179     Vny`P. = Vuy`P.*vnorm`P.;
180     Vnz`P. = Vuz`P.*vnorm`P.;
181     Unx`P. = NyP*Vnz`P. - NzP*Vny`P.;
182     Uny`P. = NzP*Vnx`P. - NxP*Vnz`P.;
183     Unz`P. = NxP*Vny`P. - NyP*Vnx`P.;
184     { Transform vectors, normalized (dx,dy,dz) away from surf }
185     Ldx(dx,dy,dz) = dx*Unx`P. + dy*Uny`P. + dz*Unz`P.;
186     Ldy(dx,dy,dz) = dx*Vnx`P. + dy*Vny`P. + dz*Vnz`P.;
187     Ldz(dx,dy,dz) = dx*NxP + dy*NyP + dz*NzP;
188     { Incident vector transformed to our coords }
189     Idx = Ldx(-Dx,-Dy,-Dz);
190     Idy = Ldy(-Dx,-Dy,-Dz);
191     Idz = RdotP;