1 |
rschregle |
1.1 |
/* |
2 |
rschregle |
1.2 |
====================================================================== |
3 |
rschregle |
1.1 |
In-core kd-tree for photon map |
4 |
|
|
|
5 |
|
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
6 |
|
|
(c) Fraunhofer Institute for Solar Energy Systems, |
7 |
|
|
(c) Lucerne University of Applied Sciences and Arts, |
8 |
rschregle |
1.2 |
supported by the Swiss National Science Foundation (SNSF, #147053) |
9 |
|
|
====================================================================== |
10 |
rschregle |
1.1 |
|
11 |
rschregle |
1.3 |
$Id: pmapkdt.c,v 1.2 2017/08/14 21:12:10 rschregle Exp $ |
12 |
rschregle |
1.1 |
*/ |
13 |
|
|
|
14 |
|
|
|
15 |
rschregle |
1.2 |
|
16 |
rschregle |
1.1 |
#include "pmapdata.h" /* Includes pmapkdt.h */ |
17 |
|
|
#include "source.h" |
18 |
|
|
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
void kdT_Null (PhotonKdTree *kdt) |
23 |
|
|
{ |
24 |
|
|
kdt -> nodes = NULL; |
25 |
|
|
} |
26 |
|
|
|
27 |
|
|
|
28 |
|
|
|
29 |
|
|
static unsigned long kdT_MedianPartition (const Photon *heap, |
30 |
|
|
unsigned long *heapIdx, |
31 |
|
|
unsigned long *heapXdi, |
32 |
|
|
unsigned long left, |
33 |
|
|
unsigned long right, unsigned dim) |
34 |
|
|
/* Returns index to median in heap from indices left to right |
35 |
|
|
(inclusive) in dimension dim. The heap is partitioned relative to |
36 |
|
|
median using a quicksort algorithm. The heap indices in heapIdx are |
37 |
|
|
sorted rather than the heap itself. */ |
38 |
|
|
{ |
39 |
|
|
const float *p; |
40 |
|
|
unsigned long l, r, lg2, n2, m, n = right - left + 1; |
41 |
|
|
unsigned d; |
42 |
|
|
|
43 |
|
|
/* Round down n to nearest power of 2 */ |
44 |
|
|
for (lg2 = 0, n2 = n; n2 > 1; n2 >>= 1, ++lg2); |
45 |
|
|
n2 = 1 << lg2; |
46 |
|
|
|
47 |
|
|
/* Determine median position; this takes into account the fact that |
48 |
|
|
only the last level in the heap can be partially empty, and that |
49 |
|
|
it fills from left to right */ |
50 |
|
|
m = left + ((n - n2) > (n2 >> 1) - 1 ? n2 - 1 : n - (n2 >> 1)); |
51 |
|
|
|
52 |
|
|
while (right > left) { |
53 |
|
|
/* Pivot node */ |
54 |
|
|
p = heap [heapIdx [right]].pos; |
55 |
|
|
l = left; |
56 |
|
|
r = right - 1; |
57 |
|
|
|
58 |
|
|
/* l & r converge, swapping elements out of order with respect to |
59 |
|
|
pivot node. Identical keys are resolved by cycling through |
60 |
|
|
dim. The convergence point is then the pivot's position. */ |
61 |
|
|
do { |
62 |
|
|
while (l <= r) { |
63 |
|
|
d = dim; |
64 |
|
|
|
65 |
|
|
while (heap [heapIdx [l]].pos [d] == p [d]) { |
66 |
|
|
d = (d + 1) % 3; |
67 |
|
|
|
68 |
|
|
if (d == dim) { |
69 |
|
|
/* Ignore dupes? */ |
70 |
|
|
error(WARNING, "duplicate keys in photon heap"); |
71 |
|
|
l++; |
72 |
|
|
break; |
73 |
|
|
} |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
if (heap [heapIdx [l]].pos [d] < p [d]) |
77 |
|
|
l++; |
78 |
|
|
else break; |
79 |
|
|
} |
80 |
|
|
|
81 |
|
|
while (r > l) { |
82 |
|
|
d = dim; |
83 |
|
|
|
84 |
|
|
while (heap [heapIdx [r]].pos [d] == p [d]) { |
85 |
|
|
d = (d + 1) % 3; |
86 |
|
|
|
87 |
|
|
if (d == dim) { |
88 |
|
|
/* Ignore dupes? */ |
89 |
|
|
error(WARNING, "duplicate keys in photon heap"); |
90 |
|
|
r--; |
91 |
|
|
break; |
92 |
|
|
} |
93 |
|
|
} |
94 |
|
|
|
95 |
|
|
if (heap [heapIdx [r]].pos [d] > p [d]) |
96 |
|
|
r--; |
97 |
|
|
else break; |
98 |
|
|
} |
99 |
|
|
|
100 |
|
|
/* Swap indices (not the nodes they point to) */ |
101 |
|
|
n2 = heapIdx [l]; |
102 |
|
|
heapIdx [l] = heapIdx [r]; |
103 |
|
|
heapIdx [r] = n2; |
104 |
|
|
/* Update reverse indices */ |
105 |
|
|
heapXdi [heapIdx [l]] = l; |
106 |
|
|
heapXdi [n2] = r; |
107 |
|
|
} while (l < r); |
108 |
|
|
|
109 |
|
|
/* Swap indices of convergence and pivot nodes */ |
110 |
|
|
heapIdx [r] = heapIdx [l]; |
111 |
|
|
heapIdx [l] = heapIdx [right]; |
112 |
|
|
heapIdx [right] = n2; |
113 |
|
|
/* Update reverse indices */ |
114 |
|
|
heapXdi [heapIdx [r]] = r; |
115 |
|
|
heapXdi [heapIdx [l]] = l; |
116 |
|
|
heapXdi [n2] = right; |
117 |
|
|
|
118 |
|
|
if (l >= m) |
119 |
|
|
right = l - 1; |
120 |
|
|
if (l <= m) |
121 |
|
|
left = l + 1; |
122 |
|
|
} |
123 |
|
|
|
124 |
|
|
/* Once left & right have converged at m, we have found the median */ |
125 |
|
|
return m; |
126 |
|
|
} |
127 |
|
|
|
128 |
|
|
|
129 |
|
|
|
130 |
|
|
static void kdT_Build (Photon *heap, unsigned long *heapIdx, |
131 |
|
|
unsigned long *heapXdi, const float min [3], |
132 |
|
|
const float max [3], unsigned long left, |
133 |
|
|
unsigned long right, unsigned long root) |
134 |
|
|
/* Recursive part of balancePhotons(..). Builds heap from subarray |
135 |
|
|
defined by indices left and right. min and max are the minimum resp. |
136 |
|
|
maximum photon positions in the array. root is the index of the |
137 |
|
|
current subtree's root, which corresponds to the median's 1-based |
138 |
|
|
index in the heap. heapIdx are the balanced heap indices. The heap |
139 |
|
|
is accessed indirectly through these. heapXdi are the reverse indices |
140 |
|
|
from the heap to heapIdx so that heapXdi [heapIdx [i]] = i. */ |
141 |
|
|
{ |
142 |
|
|
float maxLeft [3], minRight [3]; |
143 |
|
|
Photon rootNode; |
144 |
|
|
unsigned d; |
145 |
|
|
|
146 |
|
|
/* Choose median for dimension with largest spread and partition |
147 |
|
|
accordingly */ |
148 |
|
|
const float d0 = max [0] - min [0], |
149 |
|
|
d1 = max [1] - min [1], |
150 |
|
|
d2 = max [2] - min [2]; |
151 |
|
|
const unsigned char dim = d0 > d1 ? d0 > d2 ? 0 : 2 |
152 |
|
|
: d1 > d2 ? 1 : 2; |
153 |
|
|
const unsigned long median = left == right |
154 |
|
|
? left |
155 |
|
|
: kdT_MedianPartition(heap, heapIdx, heapXdi, |
156 |
|
|
left, right, dim); |
157 |
|
|
|
158 |
|
|
/* Place median at root of current subtree. This consists of swapping |
159 |
|
|
the median and the root nodes and updating the heap indices */ |
160 |
|
|
memcpy(&rootNode, heap + heapIdx [median], sizeof(Photon)); |
161 |
|
|
memcpy(heap + heapIdx [median], heap + root - 1, sizeof(Photon)); |
162 |
|
|
rootNode.discr = dim; |
163 |
|
|
memcpy(heap + root - 1, &rootNode, sizeof(Photon)); |
164 |
|
|
heapIdx [heapXdi [root - 1]] = heapIdx [median]; |
165 |
|
|
heapXdi [heapIdx [median]] = heapXdi [root - 1]; |
166 |
|
|
heapIdx [median] = root - 1; |
167 |
|
|
heapXdi [root - 1] = median; |
168 |
|
|
|
169 |
|
|
/* Update bounds for left and right subtrees and recurse on them */ |
170 |
|
|
for (d = 0; d <= 2; d++) |
171 |
|
|
if (d == dim) |
172 |
|
|
maxLeft [d] = minRight [d] = rootNode.pos [d]; |
173 |
|
|
else { |
174 |
|
|
maxLeft [d] = max [d]; |
175 |
|
|
minRight [d] = min [d]; |
176 |
|
|
} |
177 |
|
|
|
178 |
|
|
if (left < median) |
179 |
|
|
kdT_Build(heap, heapIdx, heapXdi, min, maxLeft, left, median - 1, |
180 |
|
|
root << 1); |
181 |
|
|
|
182 |
|
|
if (right > median) |
183 |
|
|
kdT_Build(heap, heapIdx, heapXdi, minRight, max, median + 1, right, |
184 |
|
|
(root << 1) + 1); |
185 |
|
|
} |
186 |
|
|
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
void kdT_BuildPhotonMap (struct PhotonMap *pmap) |
190 |
|
|
{ |
191 |
|
|
Photon *nodes; |
192 |
|
|
unsigned long i; |
193 |
|
|
unsigned long *heapIdx, /* Photon index array */ |
194 |
|
|
*heapXdi; /* Reverse index to heapIdx */ |
195 |
|
|
|
196 |
|
|
/* Allocate kd-tree nodes and load photons from heap file */ |
197 |
|
|
if (!(nodes = calloc(pmap -> numPhotons, sizeof(Photon)))) |
198 |
|
|
error(SYSTEM, "failed in-core heap allocation in kdT_BuildPhotonMap"); |
199 |
|
|
|
200 |
|
|
rewind(pmap -> heap); |
201 |
rschregle |
1.2 |
i = fread(nodes, sizeof(Photon), pmap -> numPhotons, pmap -> heap); |
202 |
|
|
if (i != |
203 |
rschregle |
1.1 |
pmap -> numPhotons) |
204 |
|
|
error(SYSTEM, "failed loading photon heap in kdT_BuildPhotonMap"); |
205 |
|
|
|
206 |
|
|
pmap -> store.nodes = nodes; |
207 |
|
|
heapIdx = calloc(pmap -> numPhotons, sizeof(unsigned long)); |
208 |
|
|
heapXdi = calloc(pmap -> numPhotons, sizeof(unsigned long)); |
209 |
|
|
if (!heapIdx || !heapXdi) |
210 |
|
|
error(SYSTEM, "failed heap index allocation in kdT_BuildPhotonMap"); |
211 |
|
|
|
212 |
|
|
/* Initialize index arrays */ |
213 |
|
|
for (i = 0; i < pmap -> numPhotons; i++) |
214 |
|
|
heapXdi [i] = heapIdx [i] = i; |
215 |
|
|
|
216 |
|
|
/* Build kd-tree */ |
217 |
|
|
kdT_Build(nodes, heapIdx, heapXdi, pmap -> minPos, pmap -> maxPos, 0, |
218 |
|
|
pmap -> numPhotons - 1, 1); |
219 |
|
|
|
220 |
|
|
/* Cleanup */ |
221 |
|
|
free(heapIdx); |
222 |
|
|
free(heapXdi); |
223 |
|
|
} |
224 |
|
|
|
225 |
|
|
|
226 |
|
|
|
227 |
|
|
int kdT_SavePhotons (const struct PhotonMap *pmap, FILE *out) |
228 |
|
|
{ |
229 |
|
|
unsigned long i, j; |
230 |
|
|
Photon *p = (Photon*)pmap -> store.nodes; |
231 |
|
|
|
232 |
|
|
for (i = 0; i < pmap -> numPhotons; i++, p++) { |
233 |
|
|
/* Write photon attributes */ |
234 |
|
|
for (j = 0; j < 3; j++) |
235 |
|
|
putflt(p -> pos [j], out); |
236 |
|
|
|
237 |
|
|
/* Bytewise dump otherwise we have portability probs */ |
238 |
|
|
for (j = 0; j < 3; j++) |
239 |
|
|
putint(p -> norm [j], 1, out); |
240 |
|
|
|
241 |
|
|
#ifdef PMAP_FLOAT_FLUX |
242 |
|
|
for (j = 0; j < 3; j++) |
243 |
|
|
putflt(p -> flux [j], out); |
244 |
|
|
#else |
245 |
|
|
for (j = 0; j < 4; j++) |
246 |
|
|
putint(p -> flux [j], 1, out); |
247 |
|
|
#endif |
248 |
|
|
|
249 |
|
|
putint(p -> primary, sizeof(p -> primary), out); |
250 |
|
|
putint(p -> flags, 1, out); |
251 |
|
|
|
252 |
|
|
if (ferror(out)) |
253 |
|
|
return -1; |
254 |
|
|
} |
255 |
|
|
|
256 |
|
|
return 0; |
257 |
|
|
} |
258 |
|
|
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
int kdT_LoadPhotons (struct PhotonMap *pmap, FILE *in) |
262 |
|
|
{ |
263 |
|
|
unsigned long i, j; |
264 |
|
|
Photon *p; |
265 |
|
|
|
266 |
|
|
/* Allocate kd-tree based on initialised pmap -> numPhotons */ |
267 |
|
|
pmap -> store.nodes = calloc(sizeof(Photon), pmap -> numPhotons); |
268 |
|
|
if (!pmap -> store.nodes) |
269 |
|
|
error(SYSTEM, "failed kd-tree allocation in kdT_LoadPhotons"); |
270 |
|
|
|
271 |
|
|
/* Get photon attributes */ |
272 |
|
|
for (i = 0, p = pmap -> store.nodes; i < pmap -> numPhotons; i++, p++) { |
273 |
|
|
for (j = 0; j < 3; j++) |
274 |
|
|
p -> pos [j] = getflt(in); |
275 |
|
|
|
276 |
|
|
/* Bytewise grab otherwise we have portability probs */ |
277 |
|
|
for (j = 0; j < 3; j++) |
278 |
|
|
p -> norm [j] = getint(1, in); |
279 |
|
|
|
280 |
|
|
#ifdef PMAP_FLOAT_FLUX |
281 |
|
|
for (j = 0; j < 3; j++) |
282 |
|
|
p -> flux [j] = getflt(in); |
283 |
|
|
#else |
284 |
|
|
for (j = 0; j < 4; j++) |
285 |
|
|
p -> flux [j] = getint(1, in); |
286 |
|
|
#endif |
287 |
|
|
|
288 |
|
|
p -> primary = getint(sizeof(p -> primary), in); |
289 |
|
|
p -> flags = getint(1, in); |
290 |
|
|
|
291 |
|
|
if (feof(in)) |
292 |
|
|
return -1; |
293 |
|
|
} |
294 |
|
|
|
295 |
|
|
return 0; |
296 |
|
|
} |
297 |
|
|
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
void kdT_InitFindPhotons (struct PhotonMap *pmap) |
301 |
|
|
{ |
302 |
|
|
pmap -> squeue.len = pmap -> maxGather + 1; |
303 |
|
|
pmap -> squeue.node = calloc(pmap -> squeue.len, |
304 |
|
|
sizeof(PhotonSearchQueueNode)); |
305 |
|
|
if (!pmap -> squeue.node) |
306 |
|
|
error(SYSTEM, "can't allocate photon search queue"); |
307 |
|
|
} |
308 |
|
|
|
309 |
|
|
|
310 |
|
|
|
311 |
|
|
static void kdT_FindNearest (PhotonMap *pmap, const float pos [3], |
312 |
|
|
const float norm [3], unsigned long node) |
313 |
|
|
/* Recursive part of kdT_FindPhotons(). Locate pmap -> squeue.len nearest |
314 |
|
|
* neighbours to pos with similar normal and return in search queue starting |
315 |
|
|
* at pmap -> squeue.node. Note that all heap and queue indices are |
316 |
|
|
* 1-based, but accesses to the arrays are 0-based! */ |
317 |
|
|
{ |
318 |
|
|
Photon *p = (Photon*)pmap -> store.nodes + node - 1; |
319 |
|
|
unsigned i, j; |
320 |
|
|
/* Signed distance to current photon's splitting plane */ |
321 |
|
|
float d = pos [p -> discr] - p -> pos [p -> discr], |
322 |
|
|
d2 = d * d, dv [3]; |
323 |
|
|
PhotonSearchQueueNode* sq = pmap -> squeue.node; |
324 |
|
|
const unsigned sqSize = pmap -> squeue.len; |
325 |
|
|
|
326 |
|
|
/* Search subtree closer to pos first; exclude other subtree if the |
327 |
|
|
distance to the splitting plane is greater than maxDist */ |
328 |
|
|
if (d < 0) { |
329 |
|
|
if (node << 1 <= pmap -> numPhotons) |
330 |
|
|
kdT_FindNearest(pmap, pos, norm, node << 1); |
331 |
|
|
|
332 |
|
|
if (d2 < pmap -> maxDist2 && node << 1 < pmap -> numPhotons) |
333 |
|
|
kdT_FindNearest(pmap, pos, norm, (node << 1) + 1); |
334 |
|
|
} |
335 |
|
|
else { |
336 |
|
|
if (node << 1 < pmap -> numPhotons) |
337 |
|
|
kdT_FindNearest(pmap, pos, norm, (node << 1) + 1); |
338 |
|
|
|
339 |
|
|
if (d2 < pmap -> maxDist2 && node << 1 <= pmap -> numPhotons) |
340 |
|
|
kdT_FindNearest(pmap, pos, norm, node << 1); |
341 |
|
|
} |
342 |
|
|
|
343 |
|
|
/* Reject photon if normal faces away (ignored for volume photons) with |
344 |
|
|
* tolerance to account for perturbation; note photon normal is coded |
345 |
|
|
* in range [-127,127], hence we factor this in */ |
346 |
|
|
if (norm && DOT(norm, p -> norm) <= PMAP_NORM_TOL * 127 * frandom()) |
347 |
|
|
return; |
348 |
|
|
|
349 |
rschregle |
1.3 |
if (isContribPmap(pmap)) { |
350 |
|
|
/* Lookup in contribution photon map; filter according to emitting |
351 |
|
|
* light source if contrib list set, else accept all */ |
352 |
|
|
|
353 |
|
|
if (pmap -> srcContrib) { |
354 |
|
|
OBJREC *srcMod; |
355 |
|
|
const int srcIdx = photonSrcIdx(pmap, p); |
356 |
|
|
|
357 |
|
|
if (srcIdx < 0 || srcIdx >= nsources) |
358 |
|
|
error(INTERNAL, "invalid light source index in photon map"); |
359 |
|
|
|
360 |
|
|
srcMod = findmaterial(source [srcIdx].so); |
361 |
|
|
|
362 |
|
|
/* Reject photon if contributions from light source which emitted it |
363 |
|
|
* are not sought */ |
364 |
|
|
if (!lu_find(pmap -> srcContrib, srcMod -> oname) -> data) |
365 |
|
|
return; |
366 |
|
|
} |
367 |
rschregle |
1.1 |
|
368 |
|
|
/* Reject non-caustic photon if lookup for caustic contribs */ |
369 |
|
|
if (pmap -> lookupCaustic & !p -> caustic) |
370 |
|
|
return; |
371 |
|
|
} |
372 |
|
|
|
373 |
|
|
/* Squared distance to current photon (note dist2() requires doubles) */ |
374 |
|
|
VSUB(dv, pos, p -> pos); |
375 |
|
|
d2 = DOT(dv, dv); |
376 |
|
|
|
377 |
|
|
/* Accept photon if closer than current max dist & add to priority queue */ |
378 |
|
|
if (d2 < pmap -> maxDist2) { |
379 |
|
|
if (pmap -> squeue.tail < sqSize) { |
380 |
|
|
/* Priority queue not full; append photon and restore heap */ |
381 |
|
|
i = ++pmap -> squeue.tail; |
382 |
|
|
|
383 |
|
|
while (i > 1 && sq [(i >> 1) - 1].dist2 <= d2) { |
384 |
|
|
sq [i - 1].idx = sq [(i >> 1) - 1].idx; |
385 |
|
|
sq [i - 1].dist2 = sq [(i >> 1) - 1].dist2; |
386 |
|
|
i >>= 1; |
387 |
|
|
} |
388 |
|
|
|
389 |
|
|
sq [--i].idx = (PhotonIdx)p; |
390 |
|
|
sq [i].dist2 = d2; |
391 |
|
|
/* Update maxDist if we've just filled the queue */ |
392 |
|
|
if (pmap -> squeue.tail >= pmap -> squeue.len) |
393 |
|
|
pmap -> maxDist2 = sq [0].dist2; |
394 |
|
|
} |
395 |
|
|
else { |
396 |
|
|
/* Priority queue full; replace maximum, restore heap, and |
397 |
|
|
update maxDist */ |
398 |
|
|
i = 1; |
399 |
|
|
|
400 |
|
|
while (i <= sqSize >> 1) { |
401 |
|
|
j = i << 1; |
402 |
|
|
if (j < sqSize && sq [j - 1].dist2 < sq [j].dist2) |
403 |
|
|
j++; |
404 |
|
|
if (d2 >= sq [j - 1].dist2) |
405 |
|
|
break; |
406 |
|
|
sq [i - 1].idx = sq [j - 1].idx; |
407 |
|
|
sq [i - 1].dist2 = sq [j - 1].dist2; |
408 |
|
|
i = j; |
409 |
|
|
} |
410 |
|
|
|
411 |
|
|
sq [--i].idx = (PhotonIdx)p; |
412 |
|
|
sq [i].dist2 = d2; |
413 |
|
|
pmap -> maxDist2 = sq [0].dist2; |
414 |
|
|
} |
415 |
|
|
} |
416 |
|
|
} |
417 |
|
|
|
418 |
|
|
|
419 |
|
|
|
420 |
|
|
void kdT_FindPhotons (struct PhotonMap *pmap, const FVECT pos, |
421 |
|
|
const FVECT norm) |
422 |
|
|
{ |
423 |
|
|
float p [3], n [3]; |
424 |
|
|
|
425 |
|
|
/* Photon pos & normal stored at lower precision */ |
426 |
|
|
VCOPY(p, pos); |
427 |
|
|
VCOPY(n, norm); |
428 |
|
|
kdT_FindNearest(pmap, p, n, 1); |
429 |
|
|
} |
430 |
|
|
|
431 |
|
|
|
432 |
|
|
|
433 |
|
|
static void kdT_Find1Nearest (PhotonMap *pmap, const float pos [3], |
434 |
|
|
const float norm [3], Photon **photon, |
435 |
|
|
unsigned long node) |
436 |
|
|
/* Recursive part of kdT_Find1Photon(). Locate single nearest neighbour to |
437 |
|
|
* pos with similar normal. Note that all heap and queue indices are |
438 |
|
|
* 1-based, but accesses to the arrays are 0-based! */ |
439 |
|
|
{ |
440 |
|
|
Photon *p = (Photon*)pmap -> store.nodes + node - 1; |
441 |
|
|
/* Signed distance to current photon's splitting plane */ |
442 |
|
|
float d = pos [p -> discr] - p -> pos [p -> discr], d2 = d * d, |
443 |
|
|
dv [3]; |
444 |
|
|
|
445 |
|
|
/* Search subtree closer to pos first; exclude other subtree if the |
446 |
|
|
distance to the splitting plane is greater than maxDist */ |
447 |
|
|
if (d < 0) { |
448 |
|
|
if (node << 1 <= pmap -> numPhotons) |
449 |
|
|
kdT_Find1Nearest(pmap, pos, norm, photon, node << 1); |
450 |
|
|
|
451 |
|
|
if (d2 < pmap -> maxDist2 && node << 1 < pmap -> numPhotons) |
452 |
|
|
kdT_Find1Nearest(pmap, pos, norm, photon, (node << 1) + 1); |
453 |
|
|
} |
454 |
|
|
else { |
455 |
|
|
if (node << 1 < pmap -> numPhotons) |
456 |
|
|
kdT_Find1Nearest(pmap, pos, norm, photon, (node << 1) + 1); |
457 |
|
|
|
458 |
|
|
if (d2 < pmap -> maxDist2 && node << 1 <= pmap -> numPhotons) |
459 |
|
|
kdT_Find1Nearest(pmap, pos, norm, photon, node << 1); |
460 |
|
|
} |
461 |
|
|
|
462 |
|
|
/* Squared distance to current photon */ |
463 |
|
|
VSUB(dv, pos, p -> pos); |
464 |
|
|
d2 = DOT(dv, dv); |
465 |
|
|
|
466 |
|
|
if (d2 < pmap -> maxDist2 && |
467 |
|
|
DOT(norm, p -> norm) > PMAP_NORM_TOL * 127 * frandom()) { |
468 |
|
|
/* Closest photon so far with similar normal. We allow for tolerance |
469 |
|
|
* to account for perturbation in the latter; note the photon normal |
470 |
|
|
* is coded in the range [-127,127], hence we factor this in */ |
471 |
|
|
pmap -> maxDist2 = d2; |
472 |
|
|
*photon = p; |
473 |
|
|
} |
474 |
|
|
} |
475 |
|
|
|
476 |
|
|
|
477 |
|
|
|
478 |
|
|
void kdT_Find1Photon (struct PhotonMap *pmap, const FVECT pos, |
479 |
|
|
const FVECT norm, Photon *photon) |
480 |
|
|
{ |
481 |
|
|
float p [3], n [3]; |
482 |
|
|
Photon *pnn; |
483 |
|
|
|
484 |
|
|
/* Photon pos & normal stored at lower precision */ |
485 |
|
|
VCOPY(p, pos); |
486 |
|
|
VCOPY(n, norm); |
487 |
|
|
kdT_Find1Nearest(pmap, p, n, &pnn, 1); |
488 |
|
|
memcpy(photon, pnn, sizeof(Photon)); |
489 |
|
|
} |
490 |
|
|
|
491 |
|
|
|
492 |
|
|
|
493 |
|
|
int kdT_GetPhoton (const struct PhotonMap *pmap, PhotonIdx idx, |
494 |
|
|
Photon *photon) |
495 |
|
|
{ |
496 |
|
|
memcpy(photon, idx, sizeof(Photon)); |
497 |
|
|
return 0; |
498 |
|
|
} |
499 |
|
|
|
500 |
|
|
|
501 |
|
|
|
502 |
|
|
Photon *kdT_GetNearestPhoton (const PhotonSearchQueue *squeue, PhotonIdx idx) |
503 |
|
|
{ |
504 |
|
|
return idx; |
505 |
|
|
} |
506 |
|
|
|
507 |
|
|
|
508 |
|
|
|
509 |
|
|
PhotonIdx kdT_FirstPhoton (const struct PhotonMap* pmap) |
510 |
|
|
{ |
511 |
|
|
return pmap -> store.nodes; |
512 |
|
|
} |
513 |
|
|
|
514 |
|
|
|
515 |
|
|
|
516 |
|
|
void kdT_Delete (PhotonKdTree *kdt) |
517 |
|
|
{ |
518 |
|
|
free(kdt -> nodes); |
519 |
|
|
kdt -> nodes = NULL; |
520 |
|
|
} |