1 |
greg |
2.9 |
#ifndef lint |
2 |
greg |
2.12 |
static const char RCSid[] = "$Id: pmap.c,v 2.11 2016/05/17 17:39:47 rschregle Exp $"; |
3 |
greg |
2.9 |
#endif |
4 |
rschregle |
2.11 |
|
5 |
greg |
2.1 |
/* |
6 |
rschregle |
2.11 |
====================================================================== |
7 |
greg |
2.1 |
Photon map main module |
8 |
|
|
|
9 |
|
|
Roland Schregle (roland.schregle@{hslu.ch, gmail.com}) |
10 |
|
|
(c) Fraunhofer Institute for Solar Energy Systems, |
11 |
rschregle |
2.4 |
(c) Lucerne University of Applied Sciences and Arts, |
12 |
rschregle |
2.11 |
supported by the Swiss National Science Foundation (SNSF, #147053) |
13 |
|
|
====================================================================== |
14 |
greg |
2.1 |
|
15 |
greg |
2.12 |
$Id: pmap.c,v 2.11 2016/05/17 17:39:47 rschregle Exp $ |
16 |
greg |
2.1 |
*/ |
17 |
|
|
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
#include "pmap.h" |
21 |
|
|
#include "pmapmat.h" |
22 |
|
|
#include "pmapsrc.h" |
23 |
|
|
#include "pmaprand.h" |
24 |
|
|
#include "pmapio.h" |
25 |
|
|
#include "pmapbias.h" |
26 |
|
|
#include "pmapdiag.h" |
27 |
|
|
#include "otypes.h" |
28 |
|
|
#include <time.h> |
29 |
|
|
#include <sys/stat.h> |
30 |
rschregle |
2.11 |
#include <sys/mman.h> |
31 |
|
|
#include <sys/wait.h> |
32 |
greg |
2.1 |
|
33 |
|
|
|
34 |
|
|
|
35 |
|
|
void savePmaps (const PhotonMap **pmaps, int argc, char **argv) |
36 |
|
|
{ |
37 |
|
|
unsigned t; |
38 |
|
|
|
39 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) { |
40 |
|
|
if (pmaps [t]) |
41 |
greg |
2.7 |
savePhotonMap(pmaps [t], pmaps [t] -> fileName, argc, argv); |
42 |
greg |
2.1 |
} |
43 |
|
|
} |
44 |
|
|
|
45 |
|
|
|
46 |
|
|
|
47 |
|
|
static int photonParticipate (RAY *ray) |
48 |
|
|
/* Trace photon through participating medium. Returns 1 if passed through, |
49 |
|
|
or 0 if absorbed and $*%&ed. Analogon to rayparticipate(). */ |
50 |
|
|
{ |
51 |
|
|
int i; |
52 |
|
|
RREAL cosTheta, cosPhi, du, dv; |
53 |
|
|
const float cext = colorAvg(ray -> cext), |
54 |
|
|
albedo = colorAvg(ray -> albedo); |
55 |
|
|
FVECT u, v; |
56 |
|
|
COLOR cvext; |
57 |
|
|
|
58 |
|
|
/* Mean free distance until interaction with medium */ |
59 |
|
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
60 |
|
|
|
61 |
|
|
while (!localhit(ray, &thescene)) { |
62 |
|
|
setcolor(cvext, exp(-ray -> rmax * ray -> cext [0]), |
63 |
|
|
exp(-ray -> rmax * ray -> cext [1]), |
64 |
|
|
exp(-ray -> rmax * ray -> cext [2])); |
65 |
|
|
|
66 |
|
|
/* Modify ray color and normalise */ |
67 |
|
|
multcolor(ray -> rcol, cvext); |
68 |
|
|
colorNorm(ray -> rcol); |
69 |
|
|
VCOPY(ray -> rorg, ray -> rop); |
70 |
|
|
|
71 |
rschregle |
2.11 |
if (albedo > FTINY && ray -> rlvl > 0) |
72 |
greg |
2.1 |
/* Add to volume photon map */ |
73 |
rschregle |
2.11 |
newPhoton(volumePmap, ray); |
74 |
greg |
2.1 |
|
75 |
|
|
/* Absorbed? */ |
76 |
rschregle |
2.11 |
if (pmapRandom(rouletteState) > albedo) |
77 |
|
|
return 0; |
78 |
greg |
2.1 |
|
79 |
|
|
/* Colour bleeding without attenuation (?) */ |
80 |
|
|
multcolor(ray -> rcol, ray -> albedo); |
81 |
|
|
scalecolor(ray -> rcol, 1 / albedo); |
82 |
|
|
|
83 |
|
|
/* Scatter photon */ |
84 |
|
|
cosTheta = ray -> gecc <= FTINY ? 2 * pmapRandom(scatterState) - 1 |
85 |
|
|
: 1 / (2 * ray -> gecc) * |
86 |
|
|
(1 + ray -> gecc * ray -> gecc - |
87 |
|
|
(1 - ray -> gecc * ray -> gecc) / |
88 |
|
|
(1 - ray -> gecc + 2 * ray -> gecc * |
89 |
|
|
pmapRandom(scatterState))); |
90 |
|
|
|
91 |
|
|
cosPhi = cos(2 * PI * pmapRandom(scatterState)); |
92 |
|
|
du = dv = sqrt(1 - cosTheta * cosTheta); /* sin(theta) */ |
93 |
|
|
du *= cosPhi; |
94 |
|
|
dv *= sqrt(1 - cosPhi * cosPhi); /* sin(phi) */ |
95 |
|
|
|
96 |
|
|
/* Get axes u & v perpendicular to photon direction */ |
97 |
|
|
i = 0; |
98 |
|
|
do { |
99 |
|
|
v [0] = v [1] = v [2] = 0; |
100 |
|
|
v [i++] = 1; |
101 |
|
|
fcross(u, v, ray -> rdir); |
102 |
|
|
} while (normalize(u) < FTINY); |
103 |
|
|
fcross(v, ray -> rdir, u); |
104 |
|
|
|
105 |
|
|
for (i = 0; i < 3; i++) |
106 |
|
|
ray -> rdir [i] = du * u [i] + dv * v [i] + |
107 |
|
|
cosTheta * ray -> rdir [i]; |
108 |
|
|
ray -> rlvl++; |
109 |
|
|
ray -> rmax = -log(pmapRandom(mediumState)) / cext; |
110 |
|
|
} |
111 |
|
|
|
112 |
|
|
setcolor(cvext, exp(-ray -> rot * ray -> cext [0]), |
113 |
|
|
exp(-ray -> rot * ray -> cext [1]), |
114 |
|
|
exp(-ray -> rot * ray -> cext [2])); |
115 |
|
|
|
116 |
|
|
/* Modify ray color and normalise */ |
117 |
|
|
multcolor(ray -> rcol, cvext); |
118 |
|
|
colorNorm(ray -> rcol); |
119 |
|
|
|
120 |
|
|
/* Passed through medium */ |
121 |
|
|
return 1; |
122 |
|
|
} |
123 |
|
|
|
124 |
|
|
|
125 |
|
|
|
126 |
|
|
void tracePhoton (RAY *ray) |
127 |
|
|
/* Follow photon as it bounces around... */ |
128 |
|
|
{ |
129 |
|
|
long mod; |
130 |
|
|
OBJREC* mat; |
131 |
|
|
|
132 |
|
|
if (ray -> rlvl > photonMaxBounce) { |
133 |
rschregle |
2.5 |
#ifdef PMAP_RUNAWAY_WARN |
134 |
greg |
2.1 |
error(WARNING, "runaway photon!"); |
135 |
rschregle |
2.5 |
#endif |
136 |
greg |
2.1 |
return; |
137 |
|
|
} |
138 |
rschregle |
2.5 |
|
139 |
greg |
2.1 |
if (colorAvg(ray -> cext) > FTINY && !photonParticipate(ray)) |
140 |
|
|
return; |
141 |
|
|
|
142 |
|
|
if (localhit(ray, &thescene)) { |
143 |
|
|
mod = ray -> ro -> omod; |
144 |
|
|
|
145 |
|
|
if ((ray -> clipset && inset(ray -> clipset, mod)) || mod == OVOID) { |
146 |
|
|
/* Transfer ray if modifier is VOID or clipped within antimatta */ |
147 |
|
|
RAY tray; |
148 |
|
|
photonRay(ray, &tray, PMAP_XFER, NULL); |
149 |
|
|
tracePhoton(&tray); |
150 |
|
|
} |
151 |
|
|
else { |
152 |
|
|
/* Scatter for modifier material */ |
153 |
|
|
mat = objptr(mod); |
154 |
|
|
photonScatter [mat -> otype] (mat, ray); |
155 |
|
|
} |
156 |
|
|
} |
157 |
|
|
} |
158 |
|
|
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
static void preComputeGlobal (PhotonMap *pmap) |
162 |
rschregle |
2.11 |
/* Precompute irradiance from global photons for final gathering for |
163 |
|
|
a random subset of finalGather * pmap -> numPhotons photons, and builds |
164 |
|
|
the photon map, discarding the original photons. */ |
165 |
|
|
/* !!! NOTE: PRECOMPUTATION WITH OOC CURRENTLY WITHOUT CACHE !!! */ |
166 |
|
|
{ |
167 |
|
|
unsigned long i, numPreComp; |
168 |
|
|
unsigned j; |
169 |
|
|
PhotonIdx pIdx; |
170 |
|
|
Photon photon; |
171 |
|
|
RAY ray; |
172 |
|
|
PhotonMap nuPmap; |
173 |
greg |
2.1 |
|
174 |
rschregle |
2.11 |
repComplete = numPreComp = finalGather * pmap -> numPhotons; |
175 |
greg |
2.1 |
|
176 |
|
|
if (photonRepTime) { |
177 |
rschregle |
2.11 |
sprintf(errmsg, "Precomputing irradiance for %ld global photons...\n", |
178 |
|
|
numPreComp); |
179 |
greg |
2.1 |
eputs(errmsg); |
180 |
|
|
fflush(stderr); |
181 |
|
|
} |
182 |
|
|
|
183 |
rschregle |
2.11 |
/* Copy photon map for precomputed photons */ |
184 |
|
|
memcpy(&nuPmap, pmap, sizeof(PhotonMap)); |
185 |
|
|
|
186 |
|
|
/* Zero counters, init new heap and extents */ |
187 |
|
|
nuPmap.numPhotons = 0; |
188 |
|
|
initPhotonHeap(&nuPmap); |
189 |
|
|
|
190 |
|
|
for (j = 0; j < 3; j++) { |
191 |
|
|
nuPmap.minPos [j] = FHUGE; |
192 |
|
|
nuPmap.maxPos [j] = -FHUGE; |
193 |
greg |
2.1 |
} |
194 |
rschregle |
2.11 |
|
195 |
greg |
2.1 |
/* Record start time, baby */ |
196 |
|
|
repStartTime = time(NULL); |
197 |
rschregle |
2.11 |
#ifdef SIGCONT |
198 |
|
|
signal(SIGCONT, pmapPreCompReport); |
199 |
|
|
#endif |
200 |
greg |
2.1 |
repProgress = 0; |
201 |
|
|
|
202 |
rschregle |
2.11 |
photonRay(NULL, &ray, PRIMARY, NULL); |
203 |
|
|
ray.ro = NULL; |
204 |
|
|
|
205 |
|
|
for (i = 0; i < numPreComp; i++) { |
206 |
|
|
/* Get random photon from stratified distribution in source heap to |
207 |
|
|
* avoid duplicates and clutering */ |
208 |
|
|
pIdx = firstPhoton(pmap) + |
209 |
|
|
(unsigned long)((i + pmapRandom(pmap -> randState)) / |
210 |
|
|
finalGather); |
211 |
|
|
getPhoton(pmap, pIdx, &photon); |
212 |
|
|
|
213 |
|
|
/* Init dummy photon ray with intersection at photon position */ |
214 |
|
|
VCOPY(ray.rop, photon.pos); |
215 |
|
|
for (j = 0; j < 3; j++) |
216 |
|
|
ray.ron [j] = photon.norm [j] / 127.0; |
217 |
|
|
|
218 |
|
|
/* Get density estimate at photon position */ |
219 |
|
|
photonDensity(pmap, &ray, ray.rcol); |
220 |
|
|
|
221 |
|
|
/* Append photon to new heap from ray */ |
222 |
|
|
newPhoton(&nuPmap, &ray); |
223 |
greg |
2.1 |
|
224 |
rschregle |
2.11 |
/* Update progress */ |
225 |
greg |
2.1 |
repProgress++; |
226 |
|
|
|
227 |
|
|
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
228 |
|
|
pmapPreCompReport(); |
229 |
rschregle |
2.11 |
#ifdef SIGCONT |
230 |
|
|
else signal(SIGCONT, pmapPreCompReport); |
231 |
|
|
#endif |
232 |
greg |
2.1 |
} |
233 |
|
|
|
234 |
rschregle |
2.11 |
/* Flush heap */ |
235 |
|
|
flushPhotonHeap(&nuPmap); |
236 |
|
|
|
237 |
|
|
#ifdef SIGCONT |
238 |
|
|
signal(SIGCONT, SIG_DFL); |
239 |
|
|
#endif |
240 |
|
|
|
241 |
|
|
/* Trash original pmap, replace with precomputed one */ |
242 |
|
|
deletePhotons(pmap); |
243 |
|
|
memcpy(pmap, &nuPmap, sizeof(PhotonMap)); |
244 |
greg |
2.1 |
|
245 |
|
|
if (photonRepTime) { |
246 |
rschregle |
2.11 |
eputs("Rebuilding precomputed photon map...\n"); |
247 |
greg |
2.1 |
fflush(stderr); |
248 |
|
|
} |
249 |
rschregle |
2.11 |
|
250 |
|
|
/* Rebuild underlying data structure, destroying heap */ |
251 |
|
|
buildPhotonMap(pmap, NULL, NULL, 1); |
252 |
greg |
2.1 |
} |
253 |
|
|
|
254 |
|
|
|
255 |
|
|
|
256 |
rschregle |
2.11 |
typedef struct { |
257 |
|
|
unsigned long numPhotons [NUM_PMAP_TYPES], |
258 |
|
|
numEmitted, numComplete; |
259 |
|
|
} PhotonCnt; |
260 |
|
|
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
void distribPhotons (PhotonMap **pmaps, unsigned numProc) |
264 |
|
|
{ |
265 |
|
|
EmissionMap emap; |
266 |
|
|
char errmsg2 [128], shmFname [255]; |
267 |
|
|
unsigned t, srcIdx, proc; |
268 |
|
|
double totalFlux = 0; |
269 |
|
|
int shmFile, stat, pid; |
270 |
|
|
PhotonMap *pm; |
271 |
|
|
PhotonCnt *photonCnt; |
272 |
greg |
2.1 |
|
273 |
rschregle |
2.8 |
for (t = 0; t < NUM_PMAP_TYPES && !pmaps [t]; t++); |
274 |
rschregle |
2.11 |
|
275 |
greg |
2.1 |
if (t >= NUM_PMAP_TYPES) |
276 |
rschregle |
2.11 |
error(USER, "no photon maps defined in distribPhotons"); |
277 |
greg |
2.1 |
|
278 |
|
|
if (!nsources) |
279 |
rschregle |
2.11 |
error(USER, "no light sources in distribPhotons"); |
280 |
greg |
2.1 |
|
281 |
|
|
/* =================================================================== |
282 |
|
|
* INITIALISATION - Set up emission and scattering funcs |
283 |
|
|
* =================================================================== */ |
284 |
|
|
emap.samples = NULL; |
285 |
|
|
emap.maxPartitions = MAXSPART; |
286 |
|
|
emap.partitions = (unsigned char*)malloc(emap.maxPartitions >> 1); |
287 |
|
|
if (!emap.partitions) |
288 |
rschregle |
2.11 |
error(INTERNAL, "can't allocate source partitions in distribPhotons"); |
289 |
greg |
2.1 |
|
290 |
|
|
/* Initialise all defined photon maps */ |
291 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
292 |
rschregle |
2.11 |
if (pmaps [t]) { |
293 |
|
|
initPhotonMap(pmaps [t], t); |
294 |
|
|
/* Open photon heapfile */ |
295 |
|
|
initPhotonHeap(pmaps [t]); |
296 |
|
|
/* Per-subprocess target count */ |
297 |
|
|
pmaps [t] -> distribTarget /= numProc; |
298 |
|
|
} |
299 |
greg |
2.1 |
|
300 |
|
|
initPhotonEmissionFuncs(); |
301 |
|
|
initPhotonScatterFuncs(); |
302 |
|
|
|
303 |
|
|
/* Get photon ports if specified */ |
304 |
|
|
if (ambincl == 1) |
305 |
|
|
getPhotonPorts(); |
306 |
|
|
|
307 |
|
|
/* Get photon sensor modifiers */ |
308 |
|
|
getPhotonSensors(photonSensorList); |
309 |
|
|
|
310 |
rschregle |
2.11 |
/* Set up shared mem for photon counters (zeroed by ftruncate) */ |
311 |
|
|
#if 0 |
312 |
|
|
snprintf(shmFname, 255, PMAP_SHMFNAME, getpid()); |
313 |
|
|
shmFile = shm_open(shmFname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); |
314 |
|
|
#else |
315 |
|
|
strcpy(shmFname, PMAP_SHMFNAME); |
316 |
|
|
shmFile = mkstemp(shmFname); |
317 |
|
|
#endif |
318 |
|
|
|
319 |
|
|
if (shmFile < 0) |
320 |
|
|
error(SYSTEM, "failed opening shared memory file in distribPhotons"); |
321 |
|
|
|
322 |
|
|
if (ftruncate(shmFile, sizeof(*photonCnt)) < 0) |
323 |
|
|
error(SYSTEM, "failed setting shared memory size in distribPhotons"); |
324 |
|
|
|
325 |
|
|
photonCnt = mmap(NULL, sizeof(*photonCnt), PROT_READ | PROT_WRITE, |
326 |
|
|
MAP_SHARED, shmFile, 0); |
327 |
|
|
|
328 |
|
|
if (photonCnt == MAP_FAILED) |
329 |
|
|
error(SYSTEM, "failed mapping shared memory in distribPhotons"); |
330 |
|
|
|
331 |
greg |
2.1 |
if (photonRepTime) |
332 |
|
|
eputs("\n"); |
333 |
|
|
|
334 |
|
|
/* =================================================================== |
335 |
|
|
* FLUX INTEGRATION - Get total photon flux from light sources |
336 |
|
|
* =================================================================== */ |
337 |
rschregle |
2.11 |
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
338 |
greg |
2.1 |
unsigned portCnt = 0; |
339 |
|
|
emap.src = source + srcIdx; |
340 |
|
|
|
341 |
rschregle |
2.11 |
do { /* Need at least one iteration if no ports! */ |
342 |
greg |
2.1 |
emap.port = emap.src -> sflags & SDISTANT ? photonPorts + portCnt |
343 |
|
|
: NULL; |
344 |
|
|
photonPartition [emap.src -> so -> otype] (&emap); |
345 |
|
|
|
346 |
|
|
if (photonRepTime) { |
347 |
|
|
sprintf(errmsg, "Integrating flux from source %s ", |
348 |
|
|
source [srcIdx].so -> oname); |
349 |
|
|
|
350 |
|
|
if (emap.port) { |
351 |
|
|
sprintf(errmsg2, "via port %s ", |
352 |
|
|
photonPorts [portCnt].so -> oname); |
353 |
|
|
strcat(errmsg, errmsg2); |
354 |
|
|
} |
355 |
|
|
|
356 |
|
|
sprintf(errmsg2, "(%lu partitions)...\n", emap.numPartitions); |
357 |
|
|
strcat(errmsg, errmsg2); |
358 |
|
|
eputs(errmsg); |
359 |
|
|
fflush(stderr); |
360 |
|
|
} |
361 |
|
|
|
362 |
|
|
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
363 |
|
|
emap.partitionCnt++) { |
364 |
|
|
initPhotonEmission(&emap, pdfSamples); |
365 |
|
|
totalFlux += colorAvg(emap.partFlux); |
366 |
|
|
} |
367 |
|
|
|
368 |
|
|
portCnt++; |
369 |
|
|
} while (portCnt < numPhotonPorts); |
370 |
|
|
} |
371 |
|
|
|
372 |
|
|
if (totalFlux < FTINY) |
373 |
|
|
error(USER, "zero flux from light sources"); |
374 |
|
|
|
375 |
rschregle |
2.11 |
/* MAIN LOOP */ |
376 |
|
|
for (proc = 0; proc < numProc; proc++) { |
377 |
|
|
if (!(pid = fork())) { |
378 |
|
|
/* SUBPROCESS ENTERS HERE. |
379 |
|
|
All opened and memory mapped files are inherited */ |
380 |
|
|
unsigned passCnt = 0, prePassCnt = 0; |
381 |
|
|
unsigned long lastNumPhotons [NUM_PMAP_TYPES]; |
382 |
|
|
unsigned long localNumEmitted = 0; /* Num photons emitted by this |
383 |
|
|
subprocess alone */ |
384 |
greg |
2.1 |
|
385 |
rschregle |
2.11 |
/* Seed RNGs from PID for decorellated photon distribution */ |
386 |
|
|
pmapSeed(randSeed + proc, partState); |
387 |
|
|
pmapSeed(randSeed + proc, emitState); |
388 |
|
|
pmapSeed(randSeed + proc, cntState); |
389 |
|
|
pmapSeed(randSeed + proc, mediumState); |
390 |
|
|
pmapSeed(randSeed + proc, scatterState); |
391 |
|
|
pmapSeed(randSeed + proc, rouletteState); |
392 |
greg |
2.1 |
|
393 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
394 |
rschregle |
2.11 |
lastNumPhotons [t] = 0; |
395 |
|
|
|
396 |
|
|
/* ============================================================= |
397 |
|
|
* 2-PASS PHOTON DISTRIBUTION |
398 |
|
|
* Pass 1 (pre): emit fraction of target photon count |
399 |
|
|
* Pass 2 (main): based on outcome of pass 1, estimate remaining |
400 |
|
|
* number of photons to emit to approximate target |
401 |
|
|
* count |
402 |
|
|
* ============================================================= */ |
403 |
greg |
2.1 |
do { |
404 |
rschregle |
2.11 |
double numEmit; |
405 |
greg |
2.1 |
|
406 |
rschregle |
2.11 |
if (!passCnt) { |
407 |
|
|
/* INIT PASS 1 */ |
408 |
|
|
/* Skip if no photons contributed after sufficient |
409 |
|
|
* iterations; make it clear to user which photon maps are |
410 |
|
|
* missing so (s)he can check geometry and materials */ |
411 |
|
|
if (++prePassCnt > maxPreDistrib) { |
412 |
|
|
sprintf(errmsg, |
413 |
|
|
"proc %d, source %s: too many prepasses", |
414 |
|
|
proc, source [srcIdx].so -> oname); |
415 |
|
|
|
416 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
417 |
|
|
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
418 |
|
|
sprintf(errmsg2, ", no %s photons stored", |
419 |
|
|
pmapName [t]); |
420 |
|
|
strcat(errmsg, errmsg2); |
421 |
|
|
} |
422 |
|
|
|
423 |
|
|
error(USER, errmsg); |
424 |
|
|
break; |
425 |
greg |
2.1 |
} |
426 |
rschregle |
2.11 |
|
427 |
|
|
/* Num to emit is fraction of minimum target count */ |
428 |
|
|
numEmit = FHUGE; |
429 |
greg |
2.1 |
|
430 |
rschregle |
2.11 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
431 |
|
|
if (pmaps [t]) |
432 |
|
|
numEmit = min(pmaps [t] -> distribTarget, numEmit); |
433 |
|
|
|
434 |
|
|
numEmit *= preDistrib; |
435 |
greg |
2.1 |
} |
436 |
rschregle |
2.11 |
else { |
437 |
|
|
/* INIT PASS 2 */ |
438 |
|
|
/* Based on the outcome of the predistribution we can now |
439 |
|
|
* estimate how many more photons we have to emit for each |
440 |
|
|
* photon map to meet its respective target count. This |
441 |
|
|
* value is clamped to 0 in case the target has already been |
442 |
|
|
* exceeded in the pass 1. */ |
443 |
|
|
double maxDistribRatio = 0; |
444 |
|
|
|
445 |
|
|
/* Set the distribution ratio for each map; this indicates |
446 |
|
|
* how many photons of each respective type are stored per |
447 |
|
|
* emitted photon, and is used as probability for storing a |
448 |
|
|
* photon by newPhoton(). Since this biases the photon |
449 |
|
|
* density, newPhoton() promotes the flux of stored photons |
450 |
|
|
* to compensate. */ |
451 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
452 |
|
|
if ((pm = pmaps [t])) { |
453 |
|
|
pm -> distribRatio = (double)pm -> distribTarget / |
454 |
|
|
pm -> numPhotons - 1; |
455 |
|
|
|
456 |
|
|
/* Check if photon map "overflowed", i.e. exceeded its |
457 |
|
|
* target count in the prepass; correcting the photon |
458 |
|
|
* flux via the distribution ratio is no longer |
459 |
|
|
* possible, as no more photons of this type will be |
460 |
|
|
* stored, so notify the user rather than deliver |
461 |
|
|
* incorrect results. In future we should handle this |
462 |
|
|
* more intelligently by using the photonFlux in each |
463 |
|
|
* photon map to individually correct the flux after |
464 |
|
|
* distribution. */ |
465 |
|
|
if (pm -> distribRatio <= FTINY) { |
466 |
|
|
sprintf(errmsg, "%s photon map overflow in " |
467 |
|
|
"prepass, reduce -apD", pmapName [t]); |
468 |
|
|
error(INTERNAL, errmsg); |
469 |
|
|
} |
470 |
|
|
|
471 |
|
|
maxDistribRatio = max(pm -> distribRatio, |
472 |
|
|
maxDistribRatio); |
473 |
|
|
} |
474 |
greg |
2.1 |
|
475 |
rschregle |
2.11 |
/* Normalise distribution ratios and calculate number of |
476 |
|
|
* photons to emit in main pass */ |
477 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
478 |
|
|
if ((pm = pmaps [t])) |
479 |
|
|
pm -> distribRatio /= maxDistribRatio; |
480 |
|
|
|
481 |
|
|
if ((numEmit = localNumEmitted * maxDistribRatio) < FTINY) |
482 |
|
|
/* No photons left to distribute in main pass */ |
483 |
|
|
break; |
484 |
|
|
} |
485 |
|
|
|
486 |
|
|
/* Update shared completion counter for prog.report by parent */ |
487 |
|
|
photonCnt -> numComplete += numEmit; |
488 |
|
|
|
489 |
|
|
/* PHOTON DISTRIBUTION LOOP */ |
490 |
|
|
for (srcIdx = 0; srcIdx < nsources; srcIdx++) { |
491 |
|
|
unsigned portCnt = 0; |
492 |
|
|
emap.src = source + srcIdx; |
493 |
|
|
|
494 |
|
|
do { /* Need at least one iteration if no ports! */ |
495 |
|
|
emap.port = emap.src -> sflags & SDISTANT |
496 |
|
|
? photonPorts + portCnt : NULL; |
497 |
|
|
photonPartition [emap.src -> so -> otype] (&emap); |
498 |
|
|
|
499 |
|
|
if (photonRepTime && !proc) { |
500 |
|
|
if (!passCnt) |
501 |
|
|
sprintf(errmsg, "PREPASS %d on source %s ", |
502 |
|
|
prePassCnt, source [srcIdx].so -> oname); |
503 |
|
|
else |
504 |
|
|
sprintf(errmsg, "MAIN PASS on source %s ", |
505 |
|
|
source [srcIdx].so -> oname); |
506 |
|
|
|
507 |
|
|
if (emap.port) { |
508 |
|
|
sprintf(errmsg2, "via port %s ", |
509 |
|
|
photonPorts [portCnt].so -> oname); |
510 |
|
|
strcat(errmsg, errmsg2); |
511 |
|
|
} |
512 |
|
|
|
513 |
|
|
sprintf(errmsg2, "(%lu partitions)\n", |
514 |
|
|
emap.numPartitions); |
515 |
|
|
strcat(errmsg, errmsg2); |
516 |
|
|
eputs(errmsg); |
517 |
|
|
fflush(stderr); |
518 |
|
|
} |
519 |
greg |
2.1 |
|
520 |
rschregle |
2.11 |
for (emap.partitionCnt = 0; emap.partitionCnt < emap.numPartitions; |
521 |
|
|
emap.partitionCnt++) { |
522 |
|
|
double partNumEmit; |
523 |
|
|
unsigned long partEmitCnt; |
524 |
|
|
|
525 |
|
|
/* Get photon origin within current source partishunn |
526 |
|
|
* and build emission map */ |
527 |
|
|
photonOrigin [emap.src -> so -> otype] (&emap); |
528 |
|
|
initPhotonEmission(&emap, pdfSamples); |
529 |
|
|
|
530 |
|
|
/* Number of photons to emit from ziss partishunn -- |
531 |
|
|
* proportional to flux; photon ray weight and scalar |
532 |
|
|
* flux are uniform (the latter only varying in RGB). |
533 |
|
|
* */ |
534 |
|
|
partNumEmit = numEmit * colorAvg(emap.partFlux) / |
535 |
|
|
totalFlux; |
536 |
|
|
partEmitCnt = (unsigned long)partNumEmit; |
537 |
|
|
|
538 |
|
|
/* Probabilistically account for fractional photons */ |
539 |
|
|
if (pmapRandom(cntState) < partNumEmit - partEmitCnt) |
540 |
|
|
partEmitCnt++; |
541 |
|
|
|
542 |
|
|
/* Update local and shared (global) emission counter */ |
543 |
|
|
photonCnt -> numEmitted += partEmitCnt; |
544 |
|
|
localNumEmitted += partEmitCnt; |
545 |
|
|
|
546 |
|
|
/* Integer counter avoids FP rounding errors during |
547 |
|
|
* iteration */ |
548 |
|
|
while (partEmitCnt--) { |
549 |
|
|
RAY photonRay; |
550 |
|
|
|
551 |
|
|
/* Emit photon based on PDF and trace through scene |
552 |
|
|
* until absorbed/leaked */ |
553 |
|
|
emitPhoton(&emap, &photonRay); |
554 |
|
|
tracePhoton(&photonRay); |
555 |
|
|
} |
556 |
|
|
|
557 |
|
|
/* Update shared global photon count for each pmap */ |
558 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
559 |
|
|
if (pmaps [t]) { |
560 |
|
|
photonCnt -> numPhotons [t] += |
561 |
|
|
pmaps [t] -> numPhotons - lastNumPhotons [t]; |
562 |
|
|
lastNumPhotons [t] = pmaps [t] -> numPhotons; |
563 |
|
|
} |
564 |
|
|
} |
565 |
greg |
2.1 |
|
566 |
rschregle |
2.11 |
portCnt++; |
567 |
|
|
} while (portCnt < numPhotonPorts); |
568 |
|
|
} |
569 |
|
|
|
570 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
571 |
|
|
if (pmaps [t] && !pmaps [t] -> numPhotons) { |
572 |
|
|
/* Double preDistrib in case a photon map is empty and |
573 |
|
|
* redo pass 1 --> possibility of infinite loop for |
574 |
|
|
* pathological scenes (e.g. absorbing materials) */ |
575 |
|
|
preDistrib *= 2; |
576 |
|
|
break; |
577 |
greg |
2.1 |
} |
578 |
rschregle |
2.11 |
|
579 |
|
|
if (t >= NUM_PMAP_TYPES) { |
580 |
|
|
/* No empty photon maps found; now do pass 2 */ |
581 |
|
|
passCnt++; |
582 |
|
|
#if 0 |
583 |
|
|
if (photonRepTime) |
584 |
|
|
eputs("\n"); |
585 |
|
|
#endif |
586 |
greg |
2.1 |
} |
587 |
rschregle |
2.11 |
} while (passCnt < 2); |
588 |
|
|
|
589 |
|
|
/* Unmap shared photon counters */ |
590 |
|
|
#if 0 |
591 |
|
|
munmap(photonCnt, sizeof(*photonCnt)); |
592 |
|
|
close(shmFile); |
593 |
|
|
#endif |
594 |
|
|
|
595 |
|
|
/* Flush heap buffa for every pmap one final time; this is required |
596 |
|
|
* to prevent data corruption! */ |
597 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
598 |
|
|
if (pmaps [t]) { |
599 |
|
|
#if 0 |
600 |
|
|
eputs("Final flush\n"); |
601 |
|
|
#endif |
602 |
|
|
flushPhotonHeap(pmaps [t]); |
603 |
|
|
fclose(pmaps [t] -> heap); |
604 |
|
|
#ifdef DEBUG_PMAP |
605 |
|
|
sprintf(errmsg, "Proc %d: total %ld photons\n", getpid(), |
606 |
|
|
pmaps [t] -> numPhotons); |
607 |
|
|
eputs(errmsg); |
608 |
|
|
#endif |
609 |
|
|
} |
610 |
|
|
|
611 |
|
|
exit(0); |
612 |
greg |
2.1 |
} |
613 |
rschregle |
2.11 |
else if (pid < 0) |
614 |
|
|
error(SYSTEM, "failed to fork subprocess in distribPhotons"); |
615 |
|
|
} |
616 |
|
|
|
617 |
|
|
/* PARENT PROCESS CONTINUES HERE */ |
618 |
|
|
/* Record start time and enable progress report signal handler */ |
619 |
|
|
repStartTime = time(NULL); |
620 |
|
|
#ifdef SIGCONT |
621 |
|
|
signal(SIGCONT, pmapDistribReport); |
622 |
|
|
#endif |
623 |
|
|
|
624 |
|
|
if (photonRepTime) |
625 |
|
|
eputs("\n"); |
626 |
|
|
|
627 |
|
|
/* Wait for subprocesses to complete while reporting progress */ |
628 |
|
|
proc = numProc; |
629 |
|
|
while (proc) { |
630 |
|
|
while (waitpid(-1, &stat, WNOHANG) > 0) { |
631 |
|
|
/* Subprocess exited; check status */ |
632 |
|
|
if (!WIFEXITED(stat) || WEXITSTATUS(stat)) |
633 |
|
|
error(USER, "failed photon distribution"); |
634 |
|
|
|
635 |
|
|
--proc; |
636 |
|
|
} |
637 |
|
|
|
638 |
|
|
/* Nod off for a bit and update progress */ |
639 |
|
|
sleep(1); |
640 |
|
|
/* Update progress report from shared subprocess counters */ |
641 |
|
|
repEmitted = repProgress = photonCnt -> numEmitted; |
642 |
|
|
repComplete = photonCnt -> numComplete; |
643 |
|
|
|
644 |
greg |
2.1 |
for (t = 0; t < NUM_PMAP_TYPES; t++) |
645 |
rschregle |
2.11 |
if ((pm = pmaps [t])) { |
646 |
|
|
#if 0 |
647 |
|
|
/* Get photon count from heapfile size for progress update */ |
648 |
|
|
fseek(pm -> heap, 0, SEEK_END); |
649 |
|
|
pm -> numPhotons = ftell(pm -> heap) / sizeof(Photon); */ |
650 |
|
|
#else |
651 |
|
|
/* Get global photon count from shmem updated by subprocs */ |
652 |
|
|
pm -> numPhotons = photonCnt -> numPhotons [t]; |
653 |
|
|
#endif |
654 |
greg |
2.1 |
} |
655 |
rschregle |
2.11 |
|
656 |
|
|
if (photonRepTime > 0 && time(NULL) >= repLastTime + photonRepTime) |
657 |
|
|
pmapDistribReport(); |
658 |
|
|
#ifdef SIGCONT |
659 |
|
|
else signal(SIGCONT, pmapDistribReport); |
660 |
|
|
#endif |
661 |
|
|
} |
662 |
greg |
2.1 |
|
663 |
|
|
/* =================================================================== |
664 |
rschregle |
2.11 |
* POST-DISTRIBUTION - Set photon flux and build data struct for photon |
665 |
|
|
* storage, etc. |
666 |
greg |
2.1 |
* =================================================================== */ |
667 |
rschregle |
2.11 |
#ifdef SIGCONT |
668 |
|
|
signal(SIGCONT, SIG_DFL); |
669 |
|
|
#endif |
670 |
greg |
2.1 |
free(emap.samples); |
671 |
|
|
|
672 |
|
|
/* Set photon flux (repProgress is total num emitted) */ |
673 |
rschregle |
2.11 |
totalFlux /= photonCnt -> numEmitted; |
674 |
|
|
|
675 |
|
|
/* Photon counters no longer needed, unmap shared memory */ |
676 |
|
|
munmap(photonCnt, sizeof(*photonCnt)); |
677 |
|
|
close(shmFile); |
678 |
|
|
#if 0 |
679 |
|
|
shm_unlink(shmFname); |
680 |
|
|
#else |
681 |
|
|
unlink(shmFname); |
682 |
|
|
#endif |
683 |
greg |
2.1 |
|
684 |
|
|
for (t = 0; t < NUM_PMAP_TYPES; t++) |
685 |
rschregle |
2.8 |
if (pmaps [t]) { |
686 |
greg |
2.1 |
if (photonRepTime) { |
687 |
|
|
sprintf(errmsg, "\nBuilding %s photon map...\n", pmapName [t]); |
688 |
|
|
eputs(errmsg); |
689 |
|
|
fflush(stderr); |
690 |
|
|
} |
691 |
rschregle |
2.11 |
|
692 |
|
|
/* Build underlying data structure; heap is destroyed */ |
693 |
|
|
buildPhotonMap(pmaps [t], &totalFlux, NULL, numProc); |
694 |
greg |
2.1 |
} |
695 |
rschregle |
2.11 |
|
696 |
greg |
2.1 |
/* Precompute photon irradiance if necessary */ |
697 |
|
|
if (preCompPmap) |
698 |
|
|
preComputeGlobal(preCompPmap); |
699 |
|
|
} |