ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/m_wgmdf.c
Revision: 2.5
Committed: Tue Dec 17 20:03:13 2024 UTC (4 months, 2 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +40 -13 lines
Log Message:
feat: Added setting of RdotP, NxP, NyP, and NzP variables

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.5 static const char RCSid[] = "$Id: m_wgmdf.c,v 2.4 2024/12/11 18:32:26 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Shading function for programmable Ward-Geisler-Moroder-Duer material.
6     */
7    
8     #include "copyright.h"
9    
10     #include "ray.h"
11     #include "ambient.h"
12     #include "otypes.h"
13     #include "rtotypes.h"
14     #include "source.h"
15     #include "func.h"
16     #include "random.h"
17     #include "pmapmat.h"
18    
19     #ifndef MAXITER
20     #define MAXITER 10 /* maximum # specular ray attempts */
21     #endif
22     /* estimate of Fresnel function */
23     #define FRESNE(ci) (exp(-5.85*(ci)) - 0.00202943064)
24     #define FRESTHRESH 0.017999 /* minimum specularity for approx. */
25    
26     /*
27     * This routine implements the anisotropic Gaussian
28     * model described by Ward in a 1992 Siggraph article and updated by
29     * Geisler-Moroder and Duer in a 2010 article in High Performance Graphics.
30     * We do not reorient incoming ray, using side in part to determine
31     * reflectance values. Most parameters are programmable with their own
32     * modifiers and/or value expressions.
33     *
34     * Arguments for MAT_WGMDF are:
35     * 13+ rs_mod rs rs_urough rs_vrough
36     * ts_mod ts ts_urough ts_vrough
37     * td_mod
38     * ux uy uz funcfile transform
39     * 0
40     * 9+ rfdif gfdif bfdif
41     * rbdif gbdif bbdif
42     * rtdif gtdif btdif
43     * A10 ..
44     *
45     * Where the rs_urough or rs_vrough expression yields zero, mirror-Fresnel
46     * effects are computed, similar to MAT_PLASTIC and MAT_METAL. The
47     * rs* expressions should not vary with incident angle, or the material
48     * will not be physically valid. Similarly, the ts* expressions should
49     * give the same value for coincident direction vectors from either side.
50     * There are independent modifiers for specular reflection,
51     * transmission, and diffuse transmission. Diffuse reflection
52     * applies the material's main modifier, which doesn't apply to
53     * anything else by default. However, any of the modifiers may be
54     * ALIASMOD, which will use the main material modifier, or VOIDID,
55     * which will just be white.
56     * Diffuse reflection and transmission colors and patterns add to
57     * the specular components, and are only adjusted with mirror-Fresnel
58     * reflection if specular reflection is greater than FRESHTHRESH. The
59     * specular transmission is likewise adjusted in such cases. Specified
60     * values for all components should sum to less than 1, but like other
61     * Radiance materials, this is not enforced, nor is a warning issued.
62     */
63     /* specularity flags */
64     #define SP_REFL 01 /* has reflected specular component */
65     #define SP_TRAN 02 /* has transmitted specular */
66     #define SP_RPURE 04 /* mirror reflection */
67     #define SP_TPURE 010 /* has view component */
68     #define SP_FLAT 020 /* flat reflecting surface */
69     #define SP_RBLT 040 /* reflection below sample threshold */
70     #define SP_TBLT 0100 /* transmission below threshold */
71    
72     typedef struct {
73     char *nam; /* modifier name */
74     int hastexture; /* has a texture? */
75     FVECT pnorm; /* perturbed normal direction */
76     double pdot; /* perturbed dot product */
77     SCOLOR pcol; /* pattern color */
78     } MODVAL; /* modifier-derived values */
79    
80     typedef struct {
81     MODVAL mo; /* modifier parameters */
82     SCOLOR scol; /* modified diffuse color */
83     } DCOMP; /* diffuse component parameters */
84    
85     typedef struct {
86     MODVAL mo; /* modifier parameters */
87     SCOLOR scol; /* modified specular color */
88     FVECT u, v; /* u and v in-plane vectors */
89     double u_alpha; /* u roughness */
90     double v_alpha; /* v roughness */
91     } SCOMP; /* specular component parameters */
92    
93     typedef struct {
94     RAY *rp; /* ray pointer */
95     OBJREC *mtp; /* material pointer */
96     MFUNC *mf; /* pointer to expression list */
97     int specfl; /* specularity flags, defined above */
98     FVECT ulocal; /* u-vector in local coordinates */
99     DCOMP rd, td; /* diffuse component params */
100     SCOMP rs, ts; /* specular component params */
101     FVECT prdir; /* vector in transmitted direction */
102     } WGMDDAT; /* WGMD material data */
103    
104     #define clr_comps(wp) ((wp)->specfl = 0, \
105     (wp)->rd.mo.nam = (wp)->td.mo.nam = \
106     (wp)->rs.mo.nam = (wp)->ts.mo.nam = "")
107    
108     /* assign modifier values */
109     static int
110     set_modval(MODVAL *mp, OBJECT omod, const RAY *r)
111     {
112     RAY tr;
113    
114     if (!mp->nam[0])
115     mp->nam = (omod == OVOID) ? VOIDID : objptr(omod)->oname;
116     else if (!strcmp(mp->nam, VOIDID))
117     omod = OVOID;
118     else if (omod == OVOID)
119     return(0);
120     tr = *r; /* independent modifier */
121     raytexture(&tr, omod);
122     if (DOT(tr.pert,tr.pert) > FTINY*FTINY) {
123     mp->pdot = raynormal(mp->pnorm, &tr);
124     mp->hastexture = 1;
125     } else {
126     VCOPY(mp->pnorm, tr.ron);
127     mp->pdot = tr.rod;
128     mp->hastexture = 0;
129     }
130     copyscolor(mp->pcol, tr.pcol);
131     return(1);
132     }
133    
134     /* fill modifier values, using previous setting if found */
135     static int
136     fill_modval(MODVAL *mp, const WGMDDAT *wp)
137     {
138     if (mp == &wp->rd.mo) { /* special case (should be first) */
139     set_modval(mp, wp->mtp->omod, wp->rp);
140     return(1);
141     } /* use main modifier? */
142     if (!strcmp(mp->nam, ALIASMOD) || !strcmp(mp->nam, wp->rd.mo.nam)) {
143     *mp = wp->rd.mo;
144     return(1);
145     } /* check others */
146     if (mp != &wp->td.mo && !strcmp(mp->nam, wp->td.mo.nam)) {
147     *mp = wp->td.mo;
148     return(1);
149     }
150     if (mp != &wp->rs.mo && !strcmp(mp->nam, wp->rs.mo.nam)) {
151     *mp = wp->rs.mo;
152     return(1);
153     }
154     if (mp != &wp->ts.mo && !strcmp(mp->nam, wp->ts.mo.nam)) {
155     *mp = wp->ts.mo;
156     return(1);
157     } /* new modifier */
158     return(set_modval(mp, lastmod(objndx(wp->mtp), mp->nam), wp->rp));
159     }
160    
161 greg 2.5 static int
162     setWGMDfunc(MODVAL *mp, const WGMDDAT *wp)
163     {
164     static char lastMod[MAXSTR] = "";
165     double sf;
166     FVECT vec;
167    
168     if (setfunc(wp->mtp, wp->rp) == 0 &&
169     !strcmp(mp->nam, lastMod))
170     return(0); /* already set */
171     /* else (re)assign special variables */
172     strcpy(lastMod, mp->nam);
173     sf = (wp->rp->rod > 0) ? 1. : -1.;
174     varset("RdotP`", '=', (-1. < mp->pdot) & (mp->pdot < 1.)
175     ? sf*mp->pdot : 1.);
176     sf /= funcxf.sca;
177     multv3(vec, mp->pnorm, funcxf.xfm);
178     varset("NxP`", '=', vec[0]*sf);
179     varset("NyP`", '=', vec[1]*sf);
180     varset("NzP`", '=', vec[2]*sf);
181     return(1);
182     }
183    
184 greg 2.1 /* assign indicated diffuse component (do !trans first) */
185     static void
186     set_dcomp(WGMDDAT *wp, int trans)
187     {
188     DCOMP *dp = trans ? &wp->td : &wp->rd;
189     const int offs = trans ? 6 : 3*(wp->rp->rod < 0);
190    
191     if (trans) { /* transmitted diffuse? */
192     if (intens(wp->mtp->oargs.farg+offs) <= FTINY) {
193     scolorblack(dp->scol);
194     return;
195     }
196     dp->mo.nam = wp->mtp->oargs.sarg[8];
197     if (!fill_modval(&dp->mo, wp)) {
198     sprintf(errmsg,
199     "unknown diffuse transmission modifier '%s'",
200     dp->mo.nam);
201     objerror(wp->mtp, USER, errmsg);
202     }
203     } else /* no priors for main mod */
204     fill_modval(&dp->mo, wp);
205    
206     setscolor(dp->scol, wp->mtp->oargs.farg[offs],
207     wp->mtp->oargs.farg[offs+1],
208     wp->mtp->oargs.farg[offs+2]);
209     smultscolor(dp->scol, dp->mo.pcol);
210     }
211    
212     /* assign indicated specular component */
213     static void
214     set_scomp(WGMDDAT *wp, int trans)
215     {
216     SCOMP *sp = trans ? &wp->ts : &wp->rs;
217     const int eoff = 3*(trans != 0);
218     double coef;
219 greg 2.5 /* constant zero check */
220     if (wp->mf->ep[eoff]->type == NUM &&
221     wp->mf->ep[eoff]->v.num <= FTINY) {
222     scolorblack(sp->scol);
223     return;
224     } /* need modifier */
225     sp->mo.nam = wp->mtp->oargs.sarg[4*(trans != 0)];
226     if (!fill_modval(&sp->mo, wp)) {
227     sprintf(errmsg, "unknown specular %s modifier '%s'",
228     trans ? "transmission" : "reflection", sp->mo.nam);
229     objerror(wp->mtp, USER, errmsg);
230     }
231     setWGMDfunc(&sp->mo, wp);
232 greg 2.1 errno = 0;
233     coef = evalue(wp->mf->ep[eoff]);
234     if ((errno == EDOM) | (errno == ERANGE)) {
235     objerror(wp->mtp, WARNING, "specular compute error");
236     scolorblack(sp->scol);
237     return;
238     }
239     if (coef <= FTINY) { /* negligible value? */
240     scolorblack(sp->scol);
241     return;
242     }
243     copyscolor(sp->scol, sp->mo.pcol);
244     scalescolor(sp->scol, coef);
245     if (sintens(sp->scol) <= FTINY) {
246     scolorblack(sp->scol);
247     return; /* got black pattern */
248     }
249 greg 2.5 errno = 0; /* else get roughness */
250 greg 2.1 sp->u_alpha = evalue(wp->mf->ep[eoff+1]);
251     sp->v_alpha = (sp->u_alpha > FTINY) ? evalue(wp->mf->ep[eoff+2]) : 0.0;
252     if ((errno == EDOM) | (errno == ERANGE)) {
253     objerror(wp->mtp, WARNING, "roughness compute error");
254     scolorblack(sp->scol);
255     return;
256     } /* we have something... */
257     wp->specfl |= trans ? SP_TRAN : SP_REFL;
258     if (sp->v_alpha <= FTINY) { /* is it pure specular? */
259     wp->specfl |= trans ? SP_TPURE : SP_RPURE;
260     sp->u_alpha = sp->v_alpha = 0.0;
261     return;
262     }
263     /* get anisotropic coordinates */
264     fcross(sp->v, sp->mo.pnorm, wp->ulocal);
265     if (normalize(sp->v) == 0.0) { /* orientation vector==normal? */
266     if (fabs(sp->u_alpha - sp->v_alpha) > 0.001)
267     objerror(wp->mtp, WARNING, "bad orientation vector");
268     getperpendicular(sp->u, sp->mo.pnorm, 1); /* punting */
269     fcross(sp->v, sp->mo.pnorm, sp->u);
270     sp->u_alpha = sp->v_alpha = sqrt( 0.5 *
271     (sp->u_alpha*sp->u_alpha + sp->v_alpha*sp->v_alpha) );
272     } else
273     fcross(sp->u, sp->v, sp->mo.pnorm);
274     }
275    
276     /* sample anisotropic Gaussian specular */
277     static void
278     agaussamp(WGMDDAT *wp)
279     {
280     RAY sr;
281     FVECT h;
282     double rv[2];
283     double d, sinp, cosp;
284     int maxiter, ntrials, nstarget, nstaken;
285     int i;
286     /* compute reflection */
287     if ((wp->specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == SP_REFL &&
288     rayorigin(&sr, RSPECULAR, wp->rp, wp->rs.scol) == 0) {
289     SCOLOR scol;
290     nstarget = 1;
291     if (specjitter > 1.5) { /* multiple samples? */
292     nstarget = specjitter*wp->rp->rweight + .5;
293     if (sr.rweight <= minweight*nstarget)
294     nstarget = sr.rweight/minweight;
295     if (nstarget > 1) {
296     d = 1./nstarget;
297     scalescolor(sr.rcoef, d);
298     sr.rweight *= d;
299     } else
300     nstarget = 1;
301     }
302     scolorblack(scol);
303     dimlist[ndims++] = (int)(size_t)wp->mtp;
304     maxiter = MAXITER*nstarget;
305     for (nstaken = ntrials = 0; (nstaken < nstarget) &
306     (ntrials < maxiter); ntrials++) {
307     if (ntrials)
308     d = frandom();
309     else
310     d = urand(ilhash(dimlist,ndims)+samplendx);
311     multisamp(rv, 2, d);
312     d = 2.0*PI * rv[0];
313     cosp = tcos(d) * wp->rs.u_alpha;
314     sinp = tsin(d) * wp->rs.v_alpha;
315     d = 1./sqrt(cosp*cosp + sinp*sinp);
316     cosp *= d;
317     sinp *= d;
318     if ((0. <= specjitter) & (specjitter < 1.))
319     rv[1] = 1.0 - specjitter*rv[1];
320     d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) /
321     (cosp*cosp/(wp->rs.u_alpha*wp->rs.u_alpha) +
322     sinp*sinp/(wp->rs.v_alpha*wp->rs.v_alpha)) );
323     for (i = 0; i < 3; i++)
324     h[i] = wp->rs.mo.pnorm[i] +
325     d*(cosp*wp->rs.u[i] + sinp*wp->rs.v[i]);
326     d = -2.0 * DOT(h, wp->rp->rdir) / (1.0 + d*d);
327     VSUM(sr.rdir, wp->rp->rdir, h, d);
328     /* sample rejection test */
329     d = DOT(sr.rdir, wp->rp->ron);
330     if ((d > 0) ^ (wp->rp->rod > 0))
331     continue;
332     checknorm(sr.rdir);
333     if (nstarget > 1) { /* W-G-M-D adjustment */
334     if (nstaken) rayclear(&sr);
335     rayvalue(&sr);
336     d = 2./(1. + wp->rp->rod/d);
337     scalescolor(sr.rcol, d);
338     saddscolor(scol, sr.rcol);
339     } else {
340     rayvalue(&sr);
341     smultscolor(sr.rcol, sr.rcoef);
342     saddscolor(wp->rp->rcol, sr.rcol);
343     }
344     ++nstaken;
345     }
346     if (nstarget > 1) { /* final W-G-M-D weighting */
347     smultscolor(scol, sr.rcoef);
348     d = (double)nstarget/ntrials;
349     scalescolor(scol, d);
350     saddscolor(wp->rp->rcol, scol);
351     }
352     ndims--;
353     }
354     /* compute transmission */
355     if ((wp->specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == SP_TRAN &&
356     rayorigin(&sr, TSPECULAR, wp->rp, wp->ts.scol) == 0) {
357     nstarget = 1;
358     if (specjitter > 1.5) { /* multiple samples? */
359     nstarget = specjitter*wp->rp->rweight + .5;
360     if (sr.rweight <= minweight*nstarget)
361     nstarget = sr.rweight/minweight;
362     if (nstarget > 1) {
363     d = 1./nstarget;
364     scalescolor(sr.rcoef, d);
365     sr.rweight *= d;
366     } else
367     nstarget = 1;
368     }
369     dimlist[ndims++] = (int)(size_t)wp->mtp;
370     maxiter = MAXITER*nstarget;
371     for (nstaken = ntrials = 0; (nstaken < nstarget) &
372     (ntrials < maxiter); ntrials++) {
373     if (ntrials)
374     d = frandom();
375     else
376     d = urand(ilhash(dimlist,ndims)+1823+samplendx);
377     multisamp(rv, 2, d);
378     d = 2.0*PI * rv[0];
379     cosp = tcos(d) * wp->ts.u_alpha;
380     sinp = tsin(d) * wp->ts.v_alpha;
381     d = 1./sqrt(cosp*cosp + sinp*sinp);
382     cosp *= d;
383     sinp *= d;
384     if ((0. <= specjitter) & (specjitter < 1.))
385     rv[1] = 1.0 - specjitter*rv[1];
386     if (rv[1] <= FTINY)
387     d = 1.0;
388     else
389     d = sqrt(-log(rv[1]) /
390     (cosp*cosp/(wp->ts.u_alpha*wp->ts.u_alpha) +
391     sinp*sinp/(wp->ts.v_alpha*wp->ts.v_alpha)));
392     for (i = 0; i < 3; i++)
393     sr.rdir[i] = wp->prdir[i] +
394     d*(cosp*wp->ts.u[i] + sinp*wp->ts.v[i]);
395     /* rejection test */
396     if ((DOT(sr.rdir,wp->rp->ron) > 0) == (wp->rp->rod > 0))
397     continue;
398     normalize(sr.rdir); /* OK, normalize */
399     if (nstaken) /* multi-sampling? */
400     rayclear(&sr);
401     rayvalue(&sr);
402     smultscolor(sr.rcol, sr.rcoef);
403     saddscolor(wp->rp->rcol, sr.rcol);
404     ++nstaken;
405     }
406     ndims--;
407     }
408     }
409    
410     /* compute source contribution for MAT_WGMDF */
411     static void
412     dirwgmdf(SCOLOR scval, void *uwp, FVECT ldir, double omega)
413     {
414     WGMDDAT *wp = (WGMDDAT *)uwp;
415     const int hitfront = (wp->rp->rod > 0);
416     double fresadj = 1.;
417     double ldot;
418     double dtmp, dtmp1, dtmp2;
419     FVECT h;
420     double au2, av2;
421     SCOLOR sctmp;
422    
423     scolorblack(scval); /* will add component coefficients */
424    
425     /* XXX ignores which side is lit */
426     if (wp->specfl & SP_RPURE && pbright(wp->rs.scol) >= FRESTHRESH)
427     fresadj = 1. - FRESNE(fabs(DOT(wp->rs.mo.pnorm,ldir)));
428    
429     if (sintens(wp->rd.scol) > FTINY &&
430     ((ldot = DOT(wp->rd.mo.pnorm,ldir)) > 0) == hitfront) {
431     /*
432     * Compute diffuse reflection coefficient for source.
433     */
434     copyscolor(sctmp, wp->rd.scol);
435     dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
436     scalescolor(sctmp, dtmp);
437     saddscolor(scval, sctmp);
438     }
439     if (sintens(wp->td.scol) > FTINY &&
440     ((ldot = DOT(wp->td.mo.pnorm,ldir)) > 0) ^ hitfront) {
441     /*
442     * Compute diffuse transmission coefficient for source.
443     */
444     copyscolor(sctmp, wp->td.scol);
445     dtmp = fabs(ldot) * omega * (1.0/PI) * fresadj;
446     scalescolor(sctmp, dtmp);
447     saddscolor(scval, sctmp);
448     }
449     #if 0 /* XXX not yet implemented */
450     if (ambRayInPmap(wp->rp))
451     return; /* specular accounted for in photon map */
452     #endif
453     if ((wp->specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
454     ((ldot = DOT(wp->rs.mo.pnorm,ldir)) > 0) == hitfront) {
455     /*
456     * Compute specular reflection coefficient for source using
457     * anisotropic Gaussian distribution model.
458     */
459     /* add source width if flat */
460     if (wp->specfl & SP_FLAT)
461     au2 = av2 = omega * (0.25/PI);
462     else
463     au2 = av2 = 0.0;
464     au2 += wp->rs.u_alpha*wp->rs.u_alpha;
465     av2 += wp->rs.v_alpha*wp->rs.v_alpha;
466     /* half vector */
467     VSUB(h, ldir, wp->rp->rdir);
468     /* ellipse */
469     dtmp1 = DOT(wp->rs.u, h);
470     dtmp1 *= dtmp1 / au2;
471     dtmp2 = DOT(wp->rs.v, h);
472     dtmp2 *= dtmp2 / av2;
473     /* W-G-M-D model */
474     dtmp = DOT(wp->rs.mo.pnorm, h);
475     dtmp *= dtmp;
476     dtmp1 = (dtmp1 + dtmp2) / dtmp;
477     dtmp = exp(-dtmp1) * DOT(h,h) /
478     (PI * dtmp*dtmp * sqrt(au2*av2));
479    
480     if (dtmp > FTINY) { /* worth using? */
481     copyscolor(sctmp, wp->rs.scol);
482     dtmp *= fabs(ldot) * omega;
483     scalescolor(sctmp, dtmp);
484     saddscolor(scval, sctmp);
485     }
486     }
487     if ((wp->specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
488     ((ldot = DOT(wp->ts.mo.pnorm,ldir)) > 0) ^ hitfront) {
489     /*
490     * Compute specular transmission coefficient for source.
491     */
492     /* roughness + source */
493     au2 = av2 = omega * (1.0/PI);
494     au2 += wp->ts.u_alpha*wp->ts.u_alpha;
495     av2 += wp->ts.v_alpha*wp->ts.v_alpha;
496     /* "half vector" */
497     VSUB(h, ldir, wp->prdir);
498     dtmp = DOT(h,h);
499     if (dtmp > FTINY*FTINY) {
500     dtmp1 = DOT(h,wp->ts.mo.pnorm);
501     dtmp = 1.0 - dtmp1*dtmp1/dtmp;
502     }
503     if (dtmp > FTINY*FTINY) {
504     dtmp1 = DOT(h,wp->ts.u);
505     dtmp1 *= dtmp1 / au2;
506     dtmp2 = DOT(h,wp->ts.v);
507     dtmp2 *= dtmp2 / av2;
508     dtmp = (dtmp1 + dtmp2) / dtmp;
509     dtmp = exp(-dtmp);
510     } else
511     dtmp = 1.0;
512     /* Gaussian */
513     dtmp *= (1.0/PI) * sqrt(-ldot/(wp->ts.mo.pdot*au2*av2));
514    
515     if (dtmp > FTINY) { /* worth using? */
516     copyscolor(sctmp, wp->ts.scol);
517     dtmp *= omega;
518     scalescolor(sctmp, dtmp);
519     saddscolor(scval, sctmp);
520     }
521     }
522     }
523    
524     /* color a ray that hit a programmable WGMD material */
525     int
526     m_wgmdf(OBJREC *m, RAY *r)
527     {
528     RAY lr;
529     WGMDDAT wd;
530     SCOLOR sctmp;
531     FVECT anorm;
532     int i;
533    
534     if (!backvis & (r->rod < 0.0)) {
535     raytrans(r);
536     return(1); /* backside invisible */
537     }
538     if ((m->oargs.nsargs < 13) | (m->oargs.nfargs < 9))
539     objerror(m, USER, "bad number of arguments");
540 greg 2.2
541     if (r->crtype & SHADOW && !strcmp(m->oargs.sarg[5], "0"))
542     return(1); /* first shadow test */
543 greg 2.1 clr_comps(&wd);
544     wd.rp = r;
545     wd.mtp = m;
546     wd.mf = getfunc(m, 12, 0xEEE, 1);
547 greg 2.5 set_dcomp(&wd, 0); /* gets main modifier */
548     setWGMDfunc(&wd.rd.mo, &wd); /* get local u vector */
549 greg 2.1 errno = 0;
550     for (i = 0; i < 3; i++)
551     wd.ulocal[i] = evalue(wd.mf->ep[6+i]);
552     if ((errno == EDOM) | (errno == ERANGE))
553     wd.ulocal[0] = wd.ulocal[1] = wd.ulocal[2] = 0.0;
554     else if (wd.mf->fxp != &unitxf)
555     multv3(wd.ulocal, wd.ulocal, wd.mf->fxp->xfm);
556    
557     set_scomp(&wd, 1); /* sets SP_TPURE */
558     if (r->crtype & SHADOW && !(wd.specfl & SP_TPURE))
559 greg 2.2 return(1); /* second shadow test */
560     set_dcomp(&wd, 1);
561 greg 2.1 set_scomp(&wd, 0);
562     wd.specfl |= SP_FLAT*(r->ro != NULL && isflat(r->ro->otype));
563     /* apply Fresnel adjustments? */
564     if (wd.specfl & SP_RPURE && pbright(wd.rs.scol) >= FRESTHRESH) {
565     const double fest = FRESNE(fabs(wd.rs.mo.pdot));
566     for (i = NCSAMP; i--; )
567     wd.rs.scol[i] += fest*(1. - wd.rs.scol[i]);
568 greg 2.4 scalescolor(wd.rd.scol, 1.-fest);
569 greg 2.1 scalescolor(wd.ts.scol, 1.-fest);
570     scalescolor(wd.td.scol, 1.-fest);
571     }
572     /* check specular thresholds */
573     wd.specfl |= SP_RBLT*((wd.specfl & (SP_REFL|SP_RPURE)) == SP_REFL &&
574     specthresh >= pbright(wd.rs.scol)-FTINY);
575     wd.specfl |= SP_TBLT*((wd.specfl & (SP_TRAN|SP_TPURE)) == SP_TRAN &&
576     specthresh >= pbright(wd.ts.scol)-FTINY);
577     /* get through direction */
578     if (wd.specfl & SP_TRAN && wd.ts.mo.hastexture &&
579     !(r->crtype & (SHADOW|AMBIENT))) {
580     for (i = 0; i < 3; i++) /* perturb */
581     wd.prdir[i] = r->rdir[i] - wd.ts.mo.pnorm[i] + r->ron[i];
582     if ((DOT(wd.prdir,r->ron) > 0) ^ (r->rod > 0))
583     normalize(wd.prdir); /* OK */
584     else /* too much */
585     VCOPY(wd.prdir, r->rdir);
586     } else
587     VCOPY(wd.prdir, r->rdir);
588     /* transmitted view ray? */
589     if ((wd.specfl & (SP_TRAN|SP_TPURE|SP_TBLT)) == (SP_TRAN|SP_TPURE) &&
590     rayorigin(&lr, TRANS, r, wd.ts.scol) == 0) {
591     VCOPY(lr.rdir, wd.prdir);
592     rayvalue(&lr);
593     smultscolor(lr.rcol, lr.rcoef);
594     saddscolor(r->rcol, lr.rcol);
595     if (scolor_mean(wd.ts.scol) >= 0.999) {
596     /* completely transparent */
597     smultscolor(lr.mcol, lr.rcoef);
598     copyscolor(r->mcol, lr.mcol);
599     r->rmt = r->rot + lr.rmt;
600     r->rxt = r->rot + lr.rxt;
601     } else if (pbright(wd.ts.scol) >
602     pbright(wd.td.scol) + pbright(wd.rd.scol))
603     r->rxt = r->rot + raydistance(&lr);
604     }
605     if (r->crtype & SHADOW)
606     return(1); /* the rest is shadow */
607     /* mirror ray? */
608     if ((wd.specfl & (SP_REFL|SP_RPURE|SP_RBLT)) == (SP_REFL|SP_RPURE) &&
609     rayorigin(&lr, REFLECTED, r, wd.rs.scol) == 0) {
610     VSUM(lr.rdir, r->rdir, wd.rs.mo.pnorm, 2.*wd.rs.mo.pdot);
611     /* fall back if would penetrate */
612     if (wd.rs.mo.hastexture &&
613     (DOT(lr.rdir,r->ron) > 0) ^ (r->rod > 0))
614     VSUM(lr.rdir, r->rdir, r->ron, 2.*r->rod);
615     checknorm(lr.rdir);
616     rayvalue(&lr);
617     smultscolor(lr.rcol, lr.rcoef);
618     copyscolor(r->mcol, lr.rcol);
619     saddscolor(r->rcol, lr.rcol);
620     r->rmt = r->rot;
621     if (wd.specfl & SP_FLAT &&
622     !wd.rs.mo.hastexture | (r->crtype & AMBIENT))
623     r->rmt += raydistance(&lr);
624     }
625     if (wd.specfl & (SP_REFL|SP_TRAN)) /* specularly scattered rays */
626     agaussamp(&wd); /* checks *BLT flags */
627    
628     if (sintens(wd.rd.scol) > FTINY) { /* ambient from this side */
629     if (r->rod > 0) {
630     VCOPY(anorm, wd.rd.mo.pnorm);
631     } else {
632     anorm[0] = -wd.rd.mo.pnorm[0];
633     anorm[1] = -wd.rd.mo.pnorm[1];
634     anorm[2] = -wd.rd.mo.pnorm[2];
635     }
636     copyscolor(sctmp, wd.rd.scol);
637     if (wd.specfl & SP_RBLT) /* add in specular as well? */
638     saddscolor(sctmp, wd.rs.scol);
639     multambient(sctmp, r, anorm);
640     saddscolor(r->rcol, sctmp); /* add to returned color */
641     }
642     if (sintens(wd.td.scol) > FTINY) { /* ambient from other side */
643     if (r->rod > 0) {
644     anorm[0] = -wd.td.mo.pnorm[0];
645     anorm[1] = -wd.td.mo.pnorm[1];
646     anorm[2] = -wd.td.mo.pnorm[2];
647     } else {
648     VCOPY(anorm, wd.td.mo.pnorm);
649     }
650     copyscolor(sctmp, wd.td.scol);
651     if (wd.specfl & SP_TBLT) /* add in specular as well? */
652     saddscolor(sctmp, wd.ts.scol)
653     multambient(sctmp, r, anorm);
654     saddscolor(r->rcol, sctmp);
655     }
656     direct(r, dirwgmdf, &wd); /* add direct component last */
657     return(1);
658     }