1 |
greg |
2.1 |
#ifndef lint |
2 |
greg |
2.65 |
static const char RCSid[] = "$Id: aniso.c,v 2.64 2024/04/05 01:10:26 greg Exp $"; |
3 |
greg |
2.1 |
#endif |
4 |
|
|
/* |
5 |
|
|
* Shading functions for anisotropic materials. |
6 |
|
|
*/ |
7 |
|
|
|
8 |
greg |
2.35 |
#include "copyright.h" |
9 |
greg |
2.34 |
|
10 |
greg |
2.1 |
#include "ray.h" |
11 |
greg |
2.40 |
#include "ambient.h" |
12 |
greg |
2.1 |
#include "otypes.h" |
13 |
schorsch |
2.41 |
#include "rtotypes.h" |
14 |
|
|
#include "source.h" |
15 |
greg |
2.1 |
#include "func.h" |
16 |
|
|
#include "random.h" |
17 |
greg |
2.61 |
#include "pmapmat.h" |
18 |
greg |
2.1 |
|
19 |
greg |
2.32 |
#ifndef MAXITER |
20 |
|
|
#define MAXITER 10 /* maximum # specular ray attempts */ |
21 |
|
|
#endif |
22 |
|
|
|
23 |
greg |
2.1 |
/* |
24 |
greg |
2.22 |
* This routine implements the anisotropic Gaussian |
25 |
greg |
2.54 |
* model described by Ward in Siggraph `92 article, updated with |
26 |
|
|
* normalization and sampling adjustments due to Geisler-Moroder and Duer. |
27 |
greg |
2.1 |
* We orient the surface towards the incoming ray, so a single |
28 |
|
|
* surface can be used to represent an infinitely thin object. |
29 |
|
|
* |
30 |
|
|
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are: |
31 |
|
|
* 4+ ux uy uz funcfile [transform...] |
32 |
|
|
* 0 |
33 |
greg |
2.54 |
* 6 red grn blu specular-frac. u-rough v-rough |
34 |
greg |
2.1 |
* |
35 |
|
|
* Real arguments for MAT_TRANS2 are: |
36 |
|
|
* 8 red grn blu rspec u-rough v-rough trans tspec |
37 |
|
|
*/ |
38 |
|
|
|
39 |
|
|
/* specularity flags */ |
40 |
|
|
#define SP_REFL 01 /* has reflected specular component */ |
41 |
|
|
#define SP_TRAN 02 /* has transmitted specular */ |
42 |
greg |
2.10 |
#define SP_FLAT 04 /* reflecting surface is flat */ |
43 |
|
|
#define SP_RBLT 010 /* reflection below sample threshold */ |
44 |
|
|
#define SP_TBLT 020 /* transmission below threshold */ |
45 |
greg |
2.1 |
|
46 |
|
|
typedef struct { |
47 |
greg |
2.2 |
OBJREC *mp; /* material pointer */ |
48 |
greg |
2.1 |
RAY *rp; /* ray pointer */ |
49 |
|
|
short specfl; /* specularity flags, defined above */ |
50 |
greg |
2.62 |
SCOLOR mcolor; /* color of this material */ |
51 |
|
|
SCOLOR scolor; /* color of specular component */ |
52 |
greg |
2.1 |
FVECT prdir; /* vector in transmitted direction */ |
53 |
|
|
FVECT u, v; /* u and v vectors orienting anisotropy */ |
54 |
greg |
2.18 |
double u_alpha; /* u roughness */ |
55 |
|
|
double v_alpha; /* v roughness */ |
56 |
greg |
2.1 |
double rdiff, rspec; /* reflected specular, diffuse */ |
57 |
|
|
double trans; /* transmissivity */ |
58 |
|
|
double tdiff, tspec; /* transmitted specular, diffuse */ |
59 |
|
|
FVECT pnorm; /* perturbed surface normal */ |
60 |
|
|
double pdot; /* perturbed dot product */ |
61 |
|
|
} ANISODAT; /* anisotropic material data */ |
62 |
|
|
|
63 |
greg |
2.55 |
static void getacoords(ANISODAT *np); |
64 |
|
|
static void agaussamp(ANISODAT *np); |
65 |
greg |
2.34 |
|
66 |
greg |
2.1 |
|
67 |
greg |
2.34 |
static void |
68 |
schorsch |
2.41 |
diraniso( /* compute source contribution */ |
69 |
greg |
2.62 |
SCOLOR scval, /* returned coefficient */ |
70 |
greg |
2.54 |
void *nnp, /* material data */ |
71 |
schorsch |
2.41 |
FVECT ldir, /* light source direction */ |
72 |
|
|
double omega /* light source size */ |
73 |
|
|
) |
74 |
greg |
2.1 |
{ |
75 |
greg |
2.54 |
ANISODAT *np = nnp; |
76 |
greg |
2.1 |
double ldot; |
77 |
greg |
2.16 |
double dtmp, dtmp1, dtmp2; |
78 |
greg |
2.1 |
FVECT h; |
79 |
|
|
double au2, av2; |
80 |
greg |
2.62 |
SCOLOR sctmp; |
81 |
greg |
2.1 |
|
82 |
greg |
2.62 |
scolorblack(scval); |
83 |
greg |
2.1 |
|
84 |
|
|
ldot = DOT(np->pnorm, ldir); |
85 |
|
|
|
86 |
|
|
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY) |
87 |
|
|
return; /* wrong side */ |
88 |
|
|
|
89 |
greg |
2.54 |
if ((ldot > FTINY) & (np->rdiff > FTINY)) { |
90 |
greg |
2.1 |
/* |
91 |
|
|
* Compute and add diffuse reflected component to returned |
92 |
|
|
* color. The diffuse reflected component will always be |
93 |
|
|
* modified by the color of the material. |
94 |
|
|
*/ |
95 |
greg |
2.62 |
copyscolor(sctmp, np->mcolor); |
96 |
greg |
2.42 |
dtmp = ldot * omega * np->rdiff * (1.0/PI); |
97 |
greg |
2.62 |
scalescolor(sctmp, dtmp); |
98 |
|
|
saddscolor(scval, sctmp); |
99 |
greg |
2.1 |
} |
100 |
greg |
2.58 |
|
101 |
|
|
if ((ldot < -FTINY) & (np->tdiff > FTINY)) { |
102 |
|
|
/* |
103 |
|
|
* Compute diffuse transmission. |
104 |
|
|
*/ |
105 |
greg |
2.62 |
copyscolor(sctmp, np->mcolor); |
106 |
greg |
2.58 |
dtmp = -ldot * omega * np->tdiff * (1.0/PI); |
107 |
greg |
2.62 |
scalescolor(sctmp, dtmp); |
108 |
|
|
saddscolor(scval, sctmp); |
109 |
greg |
2.58 |
} |
110 |
|
|
|
111 |
greg |
2.61 |
if (ambRayInPmap(np->rp)) |
112 |
|
|
return; /* specular accounted for in photon map */ |
113 |
|
|
|
114 |
greg |
2.57 |
if (ldot > FTINY && np->specfl&SP_REFL) { |
115 |
greg |
2.1 |
/* |
116 |
|
|
* Compute specular reflection coefficient using |
117 |
greg |
2.46 |
* anisotropic Gaussian distribution model. |
118 |
greg |
2.1 |
*/ |
119 |
greg |
2.2 |
/* add source width if flat */ |
120 |
|
|
if (np->specfl & SP_FLAT) |
121 |
greg |
2.42 |
au2 = av2 = omega * (0.25/PI); |
122 |
greg |
2.2 |
else |
123 |
|
|
au2 = av2 = 0.0; |
124 |
greg |
2.18 |
au2 += np->u_alpha*np->u_alpha; |
125 |
|
|
av2 += np->v_alpha*np->v_alpha; |
126 |
greg |
2.1 |
/* half vector */ |
127 |
greg |
2.54 |
VSUB(h, ldir, np->rp->rdir); |
128 |
greg |
2.1 |
/* ellipse */ |
129 |
greg |
2.16 |
dtmp1 = DOT(np->u, h); |
130 |
|
|
dtmp1 *= dtmp1 / au2; |
131 |
greg |
2.1 |
dtmp2 = DOT(np->v, h); |
132 |
|
|
dtmp2 *= dtmp2 / av2; |
133 |
greg |
2.46 |
/* new W-G-M-D model */ |
134 |
greg |
2.23 |
dtmp = DOT(np->pnorm, h); |
135 |
greg |
2.46 |
dtmp *= dtmp; |
136 |
|
|
dtmp1 = (dtmp1 + dtmp2) / dtmp; |
137 |
|
|
dtmp = exp(-dtmp1) * DOT(h,h) / |
138 |
|
|
(PI * dtmp*dtmp * sqrt(au2*av2)); |
139 |
greg |
2.1 |
/* worth using? */ |
140 |
|
|
if (dtmp > FTINY) { |
141 |
greg |
2.62 |
copyscolor(sctmp, np->scolor); |
142 |
greg |
2.46 |
dtmp *= ldot * omega; |
143 |
greg |
2.62 |
scalescolor(sctmp, dtmp); |
144 |
|
|
saddscolor(scval, sctmp); |
145 |
greg |
2.1 |
} |
146 |
|
|
} |
147 |
greg |
2.58 |
|
148 |
greg |
2.57 |
if (ldot < -FTINY && np->specfl&SP_TRAN) { |
149 |
greg |
2.1 |
/* |
150 |
|
|
* Compute specular transmission. Specular transmission |
151 |
|
|
* is always modified by material color. |
152 |
|
|
*/ |
153 |
|
|
/* roughness + source */ |
154 |
greg |
2.42 |
au2 = av2 = omega * (1.0/PI); |
155 |
greg |
2.18 |
au2 += np->u_alpha*np->u_alpha; |
156 |
|
|
av2 += np->v_alpha*np->v_alpha; |
157 |
greg |
2.16 |
/* "half vector" */ |
158 |
greg |
2.54 |
VSUB(h, ldir, np->prdir); |
159 |
greg |
2.19 |
dtmp = DOT(h,h); |
160 |
greg |
2.16 |
if (dtmp > FTINY*FTINY) { |
161 |
greg |
2.19 |
dtmp1 = DOT(h,np->pnorm); |
162 |
|
|
dtmp = 1.0 - dtmp1*dtmp1/dtmp; |
163 |
|
|
if (dtmp > FTINY*FTINY) { |
164 |
|
|
dtmp1 = DOT(h,np->u); |
165 |
greg |
2.23 |
dtmp1 *= dtmp1 / au2; |
166 |
greg |
2.19 |
dtmp2 = DOT(h,np->v); |
167 |
greg |
2.23 |
dtmp2 *= dtmp2 / av2; |
168 |
greg |
2.19 |
dtmp = (dtmp1 + dtmp2) / dtmp; |
169 |
|
|
} |
170 |
greg |
2.16 |
} else |
171 |
|
|
dtmp = 0.0; |
172 |
greg |
2.46 |
/* Gaussian */ |
173 |
greg |
2.44 |
dtmp = exp(-dtmp) * (1.0/PI) * sqrt(-ldot/(np->pdot*au2*av2)); |
174 |
greg |
2.1 |
/* worth using? */ |
175 |
|
|
if (dtmp > FTINY) { |
176 |
greg |
2.62 |
copyscolor(sctmp, np->mcolor); |
177 |
greg |
2.16 |
dtmp *= np->tspec * omega; |
178 |
greg |
2.62 |
scalescolor(sctmp, dtmp); |
179 |
|
|
saddscolor(scval, sctmp); |
180 |
greg |
2.1 |
} |
181 |
|
|
} |
182 |
|
|
} |
183 |
|
|
|
184 |
|
|
|
185 |
greg |
2.54 |
int |
186 |
schorsch |
2.41 |
m_aniso( /* shade ray that hit something anisotropic */ |
187 |
greg |
2.54 |
OBJREC *m, |
188 |
|
|
RAY *r |
189 |
schorsch |
2.41 |
) |
190 |
greg |
2.1 |
{ |
191 |
|
|
ANISODAT nd; |
192 |
greg |
2.62 |
SCOLOR sctmp; |
193 |
greg |
2.54 |
int i; |
194 |
greg |
2.1 |
/* easy shadow test */ |
195 |
greg |
2.10 |
if (r->crtype & SHADOW) |
196 |
greg |
2.27 |
return(1); |
197 |
greg |
2.1 |
|
198 |
|
|
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6)) |
199 |
|
|
objerror(m, USER, "bad number of real arguments"); |
200 |
greg |
2.36 |
/* check for back side */ |
201 |
|
|
if (r->rod < 0.0) { |
202 |
greg |
2.56 |
if (!backvis) { |
203 |
greg |
2.36 |
raytrans(r); |
204 |
|
|
return(1); |
205 |
|
|
} |
206 |
|
|
raytexture(r, m->omod); |
207 |
|
|
flipsurface(r); /* reorient if backvis */ |
208 |
|
|
} else |
209 |
|
|
raytexture(r, m->omod); |
210 |
|
|
/* get material color */ |
211 |
greg |
2.2 |
nd.mp = m; |
212 |
greg |
2.1 |
nd.rp = r; |
213 |
greg |
2.62 |
setscolor(nd.mcolor, m->oargs.farg[0], |
214 |
greg |
2.1 |
m->oargs.farg[1], |
215 |
|
|
m->oargs.farg[2]); |
216 |
|
|
/* get roughness */ |
217 |
|
|
nd.specfl = 0; |
218 |
greg |
2.18 |
nd.u_alpha = m->oargs.farg[4]; |
219 |
|
|
nd.v_alpha = m->oargs.farg[5]; |
220 |
greg |
2.54 |
if ((nd.u_alpha <= FTINY) | (nd.v_alpha <= FTINY)) |
221 |
greg |
2.10 |
objerror(m, USER, "roughness too small"); |
222 |
greg |
2.36 |
|
223 |
greg |
2.1 |
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */ |
224 |
|
|
if (nd.pdot < .001) |
225 |
|
|
nd.pdot = .001; /* non-zero for diraniso() */ |
226 |
greg |
2.62 |
smultscolor(nd.mcolor, r->pcol); /* modify material color */ |
227 |
greg |
2.1 |
/* get specular component */ |
228 |
|
|
if ((nd.rspec = m->oargs.farg[3]) > FTINY) { |
229 |
|
|
nd.specfl |= SP_REFL; |
230 |
|
|
/* compute specular color */ |
231 |
|
|
if (m->otype == MAT_METAL2) |
232 |
greg |
2.62 |
copyscolor(nd.scolor, nd.mcolor); |
233 |
greg |
2.1 |
else |
234 |
greg |
2.62 |
setscolor(nd.scolor, 1.0, 1.0, 1.0); |
235 |
|
|
scalescolor(nd.scolor, nd.rspec); |
236 |
greg |
2.4 |
/* check threshold */ |
237 |
greg |
2.25 |
if (specthresh >= nd.rspec-FTINY) |
238 |
greg |
2.4 |
nd.specfl |= SP_RBLT; |
239 |
greg |
2.1 |
} |
240 |
|
|
/* compute transmission */ |
241 |
greg |
2.16 |
if (m->otype == MAT_TRANS2) { |
242 |
greg |
2.1 |
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec); |
243 |
|
|
nd.tspec = nd.trans * m->oargs.farg[7]; |
244 |
|
|
nd.tdiff = nd.trans - nd.tspec; |
245 |
|
|
if (nd.tspec > FTINY) { |
246 |
|
|
nd.specfl |= SP_TRAN; |
247 |
greg |
2.4 |
/* check threshold */ |
248 |
greg |
2.25 |
if (specthresh >= nd.tspec-FTINY) |
249 |
greg |
2.4 |
nd.specfl |= SP_TBLT; |
250 |
greg |
2.10 |
if (DOT(r->pert,r->pert) <= FTINY*FTINY) { |
251 |
greg |
2.1 |
VCOPY(nd.prdir, r->rdir); |
252 |
|
|
} else { |
253 |
|
|
for (i = 0; i < 3; i++) /* perturb */ |
254 |
greg |
2.17 |
nd.prdir[i] = r->rdir[i] - r->pert[i]; |
255 |
greg |
2.6 |
if (DOT(nd.prdir, r->ron) < -FTINY) |
256 |
|
|
normalize(nd.prdir); /* OK */ |
257 |
|
|
else |
258 |
|
|
VCOPY(nd.prdir, r->rdir); |
259 |
greg |
2.1 |
} |
260 |
|
|
} |
261 |
|
|
} else |
262 |
|
|
nd.tdiff = nd.tspec = nd.trans = 0.0; |
263 |
|
|
|
264 |
|
|
/* diffuse reflection */ |
265 |
|
|
nd.rdiff = 1.0 - nd.trans - nd.rspec; |
266 |
|
|
|
267 |
greg |
2.39 |
if (r->ro != NULL && isflat(r->ro->otype)) |
268 |
greg |
2.4 |
nd.specfl |= SP_FLAT; |
269 |
|
|
|
270 |
greg |
2.55 |
getacoords(&nd); /* set up coordinates */ |
271 |
greg |
2.1 |
|
272 |
greg |
2.60 |
if (nd.specfl & (SP_REFL|SP_TRAN)) |
273 |
greg |
2.55 |
agaussamp(&nd); |
274 |
greg |
2.1 |
|
275 |
|
|
if (nd.rdiff > FTINY) { /* ambient from this side */ |
276 |
greg |
2.62 |
copyscolor(sctmp, nd.mcolor); /* modified by material color */ |
277 |
|
|
scalescolor(sctmp, nd.rdiff); |
278 |
greg |
2.52 |
if (nd.specfl & SP_RBLT) /* add in specular as well? */ |
279 |
greg |
2.62 |
saddscolor(sctmp, nd.scolor); |
280 |
|
|
multambient(sctmp, r, nd.pnorm); |
281 |
|
|
saddscolor(r->rcol, sctmp); /* add to returned color */ |
282 |
greg |
2.1 |
} |
283 |
greg |
2.58 |
|
284 |
greg |
2.1 |
if (nd.tdiff > FTINY) { /* ambient from other side */ |
285 |
greg |
2.31 |
FVECT bnorm; |
286 |
|
|
bnorm[0] = -nd.pnorm[0]; |
287 |
|
|
bnorm[1] = -nd.pnorm[1]; |
288 |
|
|
bnorm[2] = -nd.pnorm[2]; |
289 |
greg |
2.62 |
copyscolor(sctmp, nd.mcolor); /* modified by color */ |
290 |
|
|
if (nd.specfl & SP_TBLT) { |
291 |
|
|
scalescolor(sctmp, nd.trans); |
292 |
|
|
} else { |
293 |
|
|
scalescolor(sctmp, nd.tdiff); |
294 |
|
|
} |
295 |
|
|
multambient(sctmp, r, bnorm); |
296 |
|
|
saddscolor(r->rcol, sctmp); |
297 |
greg |
2.1 |
} |
298 |
|
|
/* add direct component */ |
299 |
|
|
direct(r, diraniso, &nd); |
300 |
greg |
2.27 |
|
301 |
|
|
return(1); |
302 |
greg |
2.1 |
} |
303 |
|
|
|
304 |
greg |
2.34 |
static void |
305 |
schorsch |
2.41 |
getacoords( /* set up coordinate system */ |
306 |
greg |
2.54 |
ANISODAT *np |
307 |
schorsch |
2.41 |
) |
308 |
greg |
2.1 |
{ |
309 |
greg |
2.54 |
MFUNC *mf; |
310 |
|
|
int i; |
311 |
greg |
2.1 |
|
312 |
|
|
mf = getfunc(np->mp, 3, 0x7, 1); |
313 |
greg |
2.55 |
setfunc(np->mp, np->rp); |
314 |
greg |
2.1 |
errno = 0; |
315 |
|
|
for (i = 0; i < 3; i++) |
316 |
|
|
np->u[i] = evalue(mf->ep[i]); |
317 |
greg |
2.57 |
if ((errno == EDOM) | (errno == ERANGE)) |
318 |
|
|
np->u[0] = np->u[1] = np->u[2] = 0.0; |
319 |
greg |
2.65 |
else if (mf->fxp != &unitxf) |
320 |
greg |
2.53 |
multv3(np->u, np->u, mf->fxp->xfm); |
321 |
greg |
2.1 |
fcross(np->v, np->pnorm, np->u); |
322 |
|
|
if (normalize(np->v) == 0.0) { |
323 |
greg |
2.57 |
if (fabs(np->u_alpha - np->v_alpha) > 0.001) |
324 |
|
|
objerror(np->mp, WARNING, "illegal orientation vector"); |
325 |
greg |
2.59 |
getperpendicular(np->u, np->pnorm, 1); /* punting */ |
326 |
greg |
2.57 |
fcross(np->v, np->pnorm, np->u); |
327 |
|
|
np->u_alpha = np->v_alpha = sqrt( 0.5 * |
328 |
|
|
(np->u_alpha*np->u_alpha + np->v_alpha*np->v_alpha) ); |
329 |
|
|
} else |
330 |
|
|
fcross(np->u, np->v, np->pnorm); |
331 |
greg |
2.1 |
} |
332 |
|
|
|
333 |
|
|
|
334 |
greg |
2.34 |
static void |
335 |
greg |
2.46 |
agaussamp( /* sample anisotropic Gaussian specular */ |
336 |
greg |
2.54 |
ANISODAT *np |
337 |
schorsch |
2.41 |
) |
338 |
greg |
2.1 |
{ |
339 |
|
|
RAY sr; |
340 |
|
|
FVECT h; |
341 |
|
|
double rv[2]; |
342 |
|
|
double d, sinp, cosp; |
343 |
greg |
2.50 |
int maxiter, ntrials, nstarget, nstaken; |
344 |
greg |
2.54 |
int i; |
345 |
greg |
2.1 |
/* compute reflection */ |
346 |
greg |
2.4 |
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL && |
347 |
greg |
2.64 |
rayorigin(&sr, RSPECULAR, np->rp, np->scolor) == 0) { |
348 |
greg |
2.65 |
SCOLOR scol; |
349 |
greg |
2.50 |
nstarget = 1; |
350 |
greg |
2.47 |
if (specjitter > 1.5) { /* multiple samples? */ |
351 |
greg |
2.55 |
nstarget = specjitter*np->rp->rweight + .5; |
352 |
greg |
2.50 |
if (sr.rweight <= minweight*nstarget) |
353 |
|
|
nstarget = sr.rweight/minweight; |
354 |
|
|
if (nstarget > 1) { |
355 |
|
|
d = 1./nstarget; |
356 |
greg |
2.63 |
scalescolor(sr.rcoef, d); |
357 |
greg |
2.48 |
sr.rweight *= d; |
358 |
greg |
2.47 |
} else |
359 |
greg |
2.50 |
nstarget = 1; |
360 |
greg |
2.47 |
} |
361 |
greg |
2.62 |
scolorblack(scol); |
362 |
greg |
2.51 |
dimlist[ndims++] = (int)(size_t)np->mp; |
363 |
greg |
2.50 |
maxiter = MAXITER*nstarget; |
364 |
greg |
2.65 |
for (nstaken = ntrials = 0; (nstaken < nstarget) & |
365 |
|
|
(ntrials < maxiter); ntrials++) { |
366 |
greg |
2.50 |
if (ntrials) |
367 |
greg |
2.32 |
d = frandom(); |
368 |
|
|
else |
369 |
|
|
d = urand(ilhash(dimlist,ndims)+samplendx); |
370 |
|
|
multisamp(rv, 2, d); |
371 |
|
|
d = 2.0*PI * rv[0]; |
372 |
gwlarson |
2.33 |
cosp = tcos(d) * np->u_alpha; |
373 |
|
|
sinp = tsin(d) * np->v_alpha; |
374 |
greg |
2.47 |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
375 |
|
|
cosp *= d; |
376 |
|
|
sinp *= d; |
377 |
|
|
if ((0. <= specjitter) & (specjitter < 1.)) |
378 |
|
|
rv[1] = 1.0 - specjitter*rv[1]; |
379 |
greg |
2.65 |
d = (rv[1] <= FTINY) ? 1.0 : sqrt( -log(rv[1]) / |
380 |
greg |
2.32 |
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
381 |
greg |
2.65 |
sinp*sinp/(np->v_alpha*np->v_alpha)) ); |
382 |
greg |
2.32 |
for (i = 0; i < 3; i++) |
383 |
|
|
h[i] = np->pnorm[i] + |
384 |
|
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
385 |
greg |
2.55 |
d = -2.0 * DOT(h, np->rp->rdir) / (1.0 + d*d); |
386 |
|
|
VSUM(sr.rdir, np->rp->rdir, h, d); |
387 |
greg |
2.50 |
/* sample rejection test */ |
388 |
greg |
2.55 |
if ((d = DOT(sr.rdir, np->rp->ron)) <= FTINY) |
389 |
greg |
2.47 |
continue; |
390 |
|
|
checknorm(sr.rdir); |
391 |
greg |
2.50 |
if (nstarget > 1) { /* W-G-M-D adjustment */ |
392 |
|
|
if (nstaken) rayclear(&sr); |
393 |
|
|
rayvalue(&sr); |
394 |
greg |
2.55 |
d = 2./(1. + np->rp->rod/d); |
395 |
greg |
2.62 |
scalescolor(sr.rcol, d); |
396 |
|
|
saddscolor(scol, sr.rcol); |
397 |
greg |
2.50 |
} else { |
398 |
|
|
rayvalue(&sr); |
399 |
greg |
2.62 |
smultscolor(sr.rcol, sr.rcoef); |
400 |
|
|
saddscolor(np->rp->rcol, sr.rcol); |
401 |
greg |
2.32 |
} |
402 |
greg |
2.50 |
++nstaken; |
403 |
|
|
} |
404 |
|
|
if (nstarget > 1) { /* final W-G-M-D weighting */ |
405 |
greg |
2.62 |
smultscolor(scol, sr.rcoef); |
406 |
greg |
2.50 |
d = (double)nstarget/ntrials; |
407 |
greg |
2.62 |
scalescolor(scol, d); |
408 |
|
|
saddscolor(np->rp->rcol, scol); |
409 |
greg |
2.32 |
} |
410 |
greg |
2.1 |
ndims--; |
411 |
|
|
} |
412 |
|
|
/* compute transmission */ |
413 |
greg |
2.62 |
copyscolor(sr.rcoef, np->mcolor); /* modify by material color */ |
414 |
|
|
scalescolor(sr.rcoef, np->tspec); |
415 |
greg |
2.7 |
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN && |
416 |
greg |
2.64 |
rayorigin(&sr, TSPECULAR, np->rp, sr.rcoef) == 0) { |
417 |
greg |
2.50 |
nstarget = 1; |
418 |
greg |
2.47 |
if (specjitter > 1.5) { /* multiple samples? */ |
419 |
greg |
2.55 |
nstarget = specjitter*np->rp->rweight + .5; |
420 |
greg |
2.50 |
if (sr.rweight <= minweight*nstarget) |
421 |
|
|
nstarget = sr.rweight/minweight; |
422 |
|
|
if (nstarget > 1) { |
423 |
|
|
d = 1./nstarget; |
424 |
greg |
2.63 |
scalescolor(sr.rcoef, d); |
425 |
greg |
2.48 |
sr.rweight *= d; |
426 |
greg |
2.47 |
} else |
427 |
greg |
2.50 |
nstarget = 1; |
428 |
greg |
2.47 |
} |
429 |
greg |
2.51 |
dimlist[ndims++] = (int)(size_t)np->mp; |
430 |
greg |
2.50 |
maxiter = MAXITER*nstarget; |
431 |
greg |
2.65 |
for (nstaken = ntrials = 0; (nstaken < nstarget) & |
432 |
|
|
(ntrials < maxiter); ntrials++) { |
433 |
greg |
2.50 |
if (ntrials) |
434 |
greg |
2.32 |
d = frandom(); |
435 |
|
|
else |
436 |
|
|
d = urand(ilhash(dimlist,ndims)+1823+samplendx); |
437 |
|
|
multisamp(rv, 2, d); |
438 |
|
|
d = 2.0*PI * rv[0]; |
439 |
gwlarson |
2.33 |
cosp = tcos(d) * np->u_alpha; |
440 |
|
|
sinp = tsin(d) * np->v_alpha; |
441 |
greg |
2.47 |
d = 1./sqrt(cosp*cosp + sinp*sinp); |
442 |
|
|
cosp *= d; |
443 |
|
|
sinp *= d; |
444 |
|
|
if ((0. <= specjitter) & (specjitter < 1.)) |
445 |
|
|
rv[1] = 1.0 - specjitter*rv[1]; |
446 |
greg |
2.32 |
if (rv[1] <= FTINY) |
447 |
|
|
d = 1.0; |
448 |
|
|
else |
449 |
|
|
d = sqrt(-log(rv[1]) / |
450 |
|
|
(cosp*cosp/(np->u_alpha*np->u_alpha) + |
451 |
gwlarson |
2.33 |
sinp*sinp/(np->v_alpha*np->v_alpha))); |
452 |
greg |
2.32 |
for (i = 0; i < 3; i++) |
453 |
|
|
sr.rdir[i] = np->prdir[i] + |
454 |
|
|
d*(cosp*np->u[i] + sinp*np->v[i]); |
455 |
greg |
2.65 |
if (DOT(sr.rdir,np->rp->ron) >= -FTINY) |
456 |
|
|
continue; /* reject sample */ |
457 |
greg |
2.47 |
normalize(sr.rdir); /* OK, normalize */ |
458 |
greg |
2.50 |
if (nstaken) /* multi-sampling */ |
459 |
greg |
2.47 |
rayclear(&sr); |
460 |
|
|
rayvalue(&sr); |
461 |
greg |
2.62 |
smultscolor(sr.rcol, sr.rcoef); |
462 |
|
|
saddscolor(np->rp->rcol, sr.rcol); |
463 |
greg |
2.50 |
++nstaken; |
464 |
greg |
2.32 |
} |
465 |
greg |
2.7 |
ndims--; |
466 |
|
|
} |
467 |
greg |
2.1 |
} |