ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.101
Committed: Tue Apr 29 23:41:10 2025 UTC (2 days, 12 hours ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.100: +66 -65 lines
Log Message:
fix(rvu,rpict,rtrace,rcontrib,mkpmap): Better ambient division sample trade-in avoids hangs

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.101 static const char RCSid[] = "$Id: ambcomp.c,v 2.100 2025/04/28 19:30:01 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.86 #ifndef MINADIV
25     #define MINADIV 7 /* minimum # divisions in each dimension */
26     #endif
27 greg 2.99 #ifndef MINSDIST
28     #define MINSDIST 0.25 /* def. min. spacing = 1/4th division */
29     #endif
30 greg 2.86
31 greg 2.26 typedef struct {
32 greg 2.90 FVECT p; /* intersection point */
33 greg 2.83 float d; /* reciprocal distance */
34 greg 2.90 SCOLOR v; /* hemisphere sample value */
35 greg 2.44 } AMBSAMP; /* sample value */
36    
37     typedef struct {
38 greg 2.26 RAY *rp; /* originating ray sample */
39     int ns; /* number of samples per axis */
40 greg 2.61 int sampOK; /* acquired full sample set? */
41 greg 2.92 int atyp; /* RAMBIENT or TAMBIENT */
42 greg 2.90 SCOLOR acoef; /* division contribution coefficient */
43     SCOLOR acol; /* accumulated color */
44 greg 2.92 FVECT onrm; /* oriented unperturbed surface normal */
45 greg 2.61 FVECT ux, uy; /* tangent axis unit vectors */
46 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
47 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
48    
49 greg 2.56 #define AI(h,i,j) ((i)*(h)->ns + (j))
50     #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
51 greg 2.26
52 greg 2.27 typedef struct {
53 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
54     double I1, I2;
55 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
56    
57 greg 2.26
58 greg 2.101 #define XLOTSIZ 512 /* size of used car lot */
59 greg 2.99 #define CFIRST 0 /* first corner */
60     #define COTHER (CFIRST+4) /* non-corner sample */
61     #define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST))
62    
63     static int
64     psample_class(double ss[2]) /* classify patch sample */
65     {
66     if (ss[0] < MINSDIST) {
67     if (ss[1] < MINSDIST)
68     return(CFIRST);
69     if (ss[1] > 1.-MINSDIST)
70     return(CFIRST+2);
71     } else if (ss[0] > 1.-MINSDIST) {
72     if (ss[1] < MINSDIST)
73     return(CFIRST+1);
74     if (ss[1] > 1.-MINSDIST)
75     return(CFIRST+3);
76     }
77     return(COTHER); /* not in a corner */
78     }
79    
80     static void
81     trade_patchsamp(double ss[2]) /* trade in problem patch position */
82     {
83 greg 2.101 static float tradelot[XLOTSIZ][2];
84 greg 2.99 static short gterm[COTHER+1];
85 greg 2.101 double repl[2];
86 greg 2.99 int sclass, rclass;
87     int x;
88 greg 2.101 /* initialize lot? */
89 greg 2.99 while (gterm[COTHER] < XLOTSIZ) {
90 greg 2.101 tradelot[gterm[COTHER]][0] = frandom();
91     tradelot[gterm[COTHER]][1] = frandom();
92 greg 2.99 ++gterm[COTHER];
93 greg 2.101 }
94     /* get trade-in candidate... */
95 greg 2.99 sclass = psample_class(ss); /* submitted corner or not? */
96     switch (sclass) {
97     case COTHER: /* trade mid-edge with corner/any */
98     x = irandom( gterm[COTHER-1] > CMAXTARGET
99     ? gterm[COTHER-1] : XLOTSIZ );
100     break;
101     case CFIRST: /* kick out of first corner */
102     x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]);
103     break;
104     default: /* kick out of 2nd-4th corner */
105     x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1]));
106     x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]);
107     break;
108     }
109 greg 2.101 repl[0] = tradelot[x][0]; /* save selected replacement (result) */
110     repl[1] = tradelot[x][1];
111 greg 2.100 /* identify replacement class */
112 greg 2.99 for (rclass = CFIRST; rclass < COTHER; rclass++)
113     if (x < gterm[rclass])
114 greg 2.100 break; /* repark to keep classes grouped */
115     while (rclass > sclass) { /* replacement group after submitted? */
116 greg 2.101 tradelot[x][0] = tradelot[gterm[rclass-1]][0];
117     tradelot[x][1] = tradelot[gterm[rclass-1]][1];
118 greg 2.100 x = gterm[--rclass]++;
119     }
120     while (rclass < sclass) { /* replacement group before submitted? */
121 greg 2.101 tradelot[x][0] = tradelot[--gterm[rclass]][0];
122     tradelot[x][1] = tradelot[gterm[rclass]][1];
123 greg 2.100 x = gterm[rclass++];
124 greg 2.99 }
125 greg 2.101 tradelot[x][0] = ss[0]; /* complete the trade-in */
126     tradelot[x][1] = ss[1];
127     ss[0] = repl[0];
128     ss[1] = repl[1];
129 greg 2.99 }
130    
131     #undef XLOTSIZ
132     #undef COTHER
133     #undef CFIRST
134    
135    
136 greg 2.73 static int
137 greg 2.101 ambcollision( /* proposed direction collides? */
138     AMBHEMI *hp,
139     int i,
140     int j,
141     RREAL spt[2]
142     )
143     {
144     int ii, jj;
145     /* check existing neighbors */
146     for (ii = i-1; ii <= i+1; ii++) {
147     if (ii < 0) continue;
148     if (ii >= hp->ns) break;
149     for (jj = j-1; jj <= j+1; jj++) {
150     AMBSAMP *ap;
151     FVECT avec;
152     double dx, dy;
153     if (jj < 0) continue;
154     if (jj >= hp->ns) break;
155     if ((ii==i) & (jj==j)) continue;
156     ap = &ambsam(hp,ii,jj);
157     if (ap->d <= .5/FHUGE)
158     continue; /* no one home */
159     VSUB(avec, ap->p, hp->rp->rop);
160     normalize(avec); /* use diskworld distance */
161     dx = DOT(avec, hp->ux) - spt[0];
162     dy = DOT(avec, hp->uy) - spt[1];
163     if ((dx*dx + dy*dy)*(hp->ns*hp->ns) <
164     PI*MINSDIST*MINSDIST)
165     return(1); /* too close */
166     }
167     }
168     return(0); /* nothing to worry about */
169     }
170    
171    
172     static int
173 greg 2.61 ambsample( /* initial ambient division sample */
174     AMBHEMI *hp,
175     int i,
176     int j,
177     int n
178 greg 2.26 )
179     {
180 greg 2.101 int trade_ok = (!n & (hp->ns >= 4))*21;
181 greg 2.61 AMBSAMP *ap = &ambsam(hp,i,j);
182     RAY ar;
183 greg 2.41 int hlist[3], ii;
184 greg 2.94 double ss[2];
185 greg 2.88 RREAL spt[2];
186     double zd;
187 greg 2.61 /* generate hemispherical sample */
188 greg 2.26 /* ambient coefficient for weight */
189     if (ambacc > FTINY)
190 greg 2.90 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
191 greg 2.26 else
192 greg 2.90 copyscolor(ar.rcoef, hp->acoef);
193 greg 2.92 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
194 greg 2.41 return(0);
195 greg 2.26 if (ambacc > FTINY) {
196 greg 2.90 smultscolor(ar.rcoef, hp->acoef);
197     scalescolor(ar.rcoef, 1./AVGREFL);
198 greg 2.41 }
199     hlist[0] = hp->rp->rno;
200 greg 2.94 hlist[1] = AI(hp,i,j);
201     hlist[2] = samplendx;
202     multisamp(ss, 2, urand(ilhash(hlist,3)+n));
203     square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
204 greg 2.101 /* avoid coincident samples? */
205     while (trade_ok-- && ambcollision(hp, i, j, spt)) {
206     if (trade_ok) {
207     trade_patchsamp(ss);
208     } else { /* punting... */
209     ss[0] = MINSDIST + (1-2*MINSDIST)*frandom();
210     ss[1] = MINSDIST + (1-2*MINSDIST)*frandom();
211     }
212     square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
213     }
214 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
215     for (ii = 3; ii--; )
216 greg 2.61 ar.rdir[ii] = spt[0]*hp->ux[ii] +
217 greg 2.26 spt[1]*hp->uy[ii] +
218 greg 2.92 zd*hp->onrm[ii];
219 greg 2.61 checknorm(ar.rdir);
220 greg 2.56 dimlist[ndims++] = AI(hp,i,j) + 90171;
221 greg 2.61 rayvalue(&ar); /* evaluate ray */
222     ndims--;
223 greg 2.83 zd = raydistance(&ar);
224     if (zd <= FTINY)
225 greg 2.61 return(0); /* should never happen */
226 greg 2.90 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
227 greg 2.83 if (zd*ap->d < 1.0) /* new/closer distance? */
228     ap->d = 1.0/zd;
229 greg 2.61 if (!n) { /* record first vertex & value */
230 greg 2.83 if (zd > 10.0*thescene.cusize + 1000.)
231     zd = 10.0*thescene.cusize + 1000.;
232     VSUM(ap->p, ar.rorg, ar.rdir, zd);
233 greg 2.90 copyscolor(ap->v, ar.rcol);
234 greg 2.61 } else { /* else update recorded value */
235 greg 2.90 sopscolor(hp->acol, -=, ap->v);
236 greg 2.61 zd = 1.0/(double)(n+1);
237 greg 2.90 scalescolor(ar.rcol, zd);
238 greg 2.61 zd *= (double)n;
239 greg 2.90 scalescolor(ap->v, zd);
240     saddscolor(ap->v, ar.rcol);
241 greg 2.61 }
242 greg 2.90 saddscolor(hp->acol, ap->v); /* add to our sum */
243 greg 2.41 return(1);
244     }
245    
246    
247 greg 2.82 /* Estimate variance based on ambient division differences */
248 greg 2.41 static float *
249     getambdiffs(AMBHEMI *hp)
250     {
251 greg 2.93 const double normf = 1./(pbright(hp->acoef) + FTINY);
252 greg 2.94 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
253     float *ep;
254 greg 2.42 AMBSAMP *ap;
255 greg 2.81 double b, b1, d2;
256 greg 2.41 int i, j;
257    
258     if (earr == NULL) /* out of memory? */
259     return(NULL);
260 greg 2.81 /* sum squared neighbor diffs */
261 greg 2.95 ap = hp->sa;
262     ep = earr + hp->ns*hp->ns; /* original estimates to scratch */
263     for (i = 0; i < hp->ns; i++)
264 greg 2.42 for (j = 0; j < hp->ns; j++, ap++, ep++) {
265 greg 2.90 b = pbright(ap[0].v);
266 greg 2.41 if (i) { /* from above */
267 greg 2.90 b1 = pbright(ap[-hp->ns].v);
268 greg 2.82 d2 = b - b1;
269 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
270 greg 2.41 ep[0] += d2;
271     ep[-hp->ns] += d2;
272     }
273 greg 2.55 if (!j) continue;
274     /* from behind */
275 greg 2.90 b1 = pbright(ap[-1].v);
276 greg 2.82 d2 = b - b1;
277 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
278 greg 2.55 ep[0] += d2;
279     ep[-1] += d2;
280     if (!i) continue;
281     /* diagonal */
282 greg 2.90 b1 = pbright(ap[-hp->ns-1].v);
283 greg 2.82 d2 = b - b1;
284 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
285 greg 2.55 ep[0] += d2;
286     ep[-hp->ns-1] += d2;
287 greg 2.41 }
288     /* correct for number of neighbors */
289 greg 2.95 ep = earr + hp->ns*hp->ns;
290     ep[0] *= 6./3.;
291     ep[hp->ns-1] *= 6./3.;
292     ep[(hp->ns-1)*hp->ns] *= 6./3.;
293     ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
294 greg 2.41 for (i = 1; i < hp->ns-1; i++) {
295 greg 2.95 ep[i*hp->ns] *= 6./5.;
296     ep[i*hp->ns + hp->ns-1] *= 6./5.;
297 greg 2.41 }
298     for (j = 1; j < hp->ns-1; j++) {
299 greg 2.95 ep[j] *= 6./5.;
300     ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
301 greg 2.93 }
302 greg 2.95 /* blur final map to reduce bias */
303 greg 2.93 for (i = 0; i < hp->ns-1; i++) {
304 greg 2.94 float *ep2;
305 greg 2.93 ep = earr + i*hp->ns;
306 greg 2.94 ep2 = ep + hp->ns*hp->ns;
307     for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
308 greg 2.95 ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
309 greg 2.94 ep[1] += .125*ep2[0];
310     ep[hp->ns] += .125*ep2[0];
311 greg 2.93 }
312 greg 2.41 }
313     return(earr);
314     }
315    
316    
317 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
318 greg 2.41 static void
319 greg 2.61 ambsupersamp(AMBHEMI *hp, int cnt)
320 greg 2.41 {
321     float *earr = getambdiffs(hp);
322 greg 2.54 double e2rem = 0;
323 greg 2.41 float *ep;
324 greg 2.55 int i, j, n, nss;
325 greg 2.41
326     if (earr == NULL) /* just skip calc. if no memory */
327     return;
328 greg 2.54 /* accumulate estimated variances */
329 greg 2.55 for (ep = earr + hp->ns*hp->ns; ep > earr; )
330     e2rem += *--ep;
331 greg 2.41 ep = earr; /* perform super-sampling */
332 greg 2.81 for (i = 0; i < hp->ns; i++)
333     for (j = 0; j < hp->ns; j++) {
334 greg 2.55 if (e2rem <= FTINY)
335     goto done; /* nothing left to do */
336     nss = *ep/e2rem*cnt + frandom();
337 greg 2.62 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
338 greg 2.77 if (!--cnt) goto done;
339 greg 2.61 e2rem -= *ep++; /* update remainder */
340 greg 2.41 }
341 greg 2.55 done:
342 greg 2.41 free(earr);
343     }
344    
345    
346 greg 2.61 static AMBHEMI *
347     samp_hemi( /* sample indirect hemisphere */
348 greg 2.90 SCOLOR rcol,
349 greg 2.61 RAY *r,
350     double wt
351     )
352     {
353 greg 2.92 int backside = (wt < 0);
354 greg 2.61 AMBHEMI *hp;
355     double d;
356     int n, i, j;
357 greg 2.77 /* insignificance check */
358 greg 2.90 d = sintens(rcol);
359     if (d <= FTINY)
360 greg 2.77 return(NULL);
361 greg 2.61 /* set number of divisions */
362 greg 2.92 if (backside) wt = -wt;
363 greg 2.61 if (ambacc <= FTINY &&
364 greg 2.94 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
365 greg 2.61 wt = d; /* avoid ray termination */
366     n = sqrt(ambdiv * wt) + 0.5;
367 greg 2.86 i = 1 + (MINADIV-1)*(ambacc > FTINY);
368     if (n < i) /* use minimum number of samples? */
369 greg 2.61 n = i;
370     /* allocate sampling array */
371     hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
372     if (hp == NULL)
373     error(SYSTEM, "out of memory in samp_hemi");
374 greg 2.92
375     if (backside) {
376     hp->atyp = TAMBIENT;
377     hp->onrm[0] = -r->ron[0];
378     hp->onrm[1] = -r->ron[1];
379     hp->onrm[2] = -r->ron[2];
380     } else {
381     hp->atyp = RAMBIENT;
382     VCOPY(hp->onrm, r->ron);
383     }
384 greg 2.61 hp->rp = r;
385     hp->ns = n;
386 greg 2.90 scolorblack(hp->acol);
387 greg 2.62 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
388 greg 2.61 hp->sampOK = 0;
389     /* assign coefficient */
390 greg 2.90 copyscolor(hp->acoef, rcol);
391 greg 2.61 d = 1.0/(n*n);
392 greg 2.90 scalescolor(hp->acoef, d);
393 greg 2.61 /* make tangent plane axes */
394 greg 2.92 if (!getperpendicular(hp->ux, hp->onrm, 1))
395 greg 2.61 error(CONSISTENCY, "bad ray direction in samp_hemi");
396 greg 2.92 VCROSS(hp->uy, hp->onrm, hp->ux);
397 greg 2.61 /* sample divisions */
398     for (i = hp->ns; i--; )
399     for (j = hp->ns; j--; )
400     hp->sampOK += ambsample(hp, i, j, 0);
401 greg 2.90 copyscolor(rcol, hp->acol);
402 greg 2.61 if (!hp->sampOK) { /* utter failure? */
403     free(hp);
404     return(NULL);
405     }
406     if (hp->sampOK < hp->ns*hp->ns) {
407     hp->sampOK *= -1; /* soft failure */
408     return(hp);
409     }
410 greg 2.86 if (hp->sampOK <= MINADIV*MINADIV)
411     return(hp); /* don't bother super-sampling */
412 greg 2.61 n = ambssamp*wt + 0.5;
413 greg 2.94 if (n >= 4*hp->ns) { /* perform super-sampling? */
414 greg 2.61 ambsupersamp(hp, n);
415 greg 2.90 copyscolor(rcol, hp->acol);
416 greg 2.61 }
417     return(hp); /* all is well */
418     }
419    
420    
421 greg 2.46 /* Return brightness of farthest ambient sample */
422     static double
423 greg 2.56 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
424 greg 2.46 {
425 greg 2.56 if (hp->sa[n1].d <= hp->sa[n2].d) {
426     if (hp->sa[n1].d <= hp->sa[n3].d)
427 greg 2.90 return(hp->sa[n1].v[0]);
428     return(hp->sa[n3].v[0]);
429 greg 2.56 }
430     if (hp->sa[n2].d <= hp->sa[n3].d)
431 greg 2.90 return(hp->sa[n2].v[0]);
432     return(hp->sa[n3].v[0]);
433 greg 2.46 }
434    
435    
436 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
437     static void
438 greg 2.56 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
439 greg 2.27 {
440 greg 2.56 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
441     int ii;
442    
443     VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
444     VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
445     VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
446 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
447     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
448 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
449     dot_er = DOT(ftp->e_i, ftp->r_i);
450 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
451     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
452     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
453 greg 2.35 sqrt( rdot_cp );
454 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
455 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
456 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
457 greg 2.46 for (ii = 3; ii--; )
458     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
459 greg 2.27 }
460    
461    
462 greg 2.28 /* Compose 3x3 matrix from two vectors */
463 greg 2.27 static void
464     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
465     {
466     mat[0][0] = 2.0*va[0]*vb[0];
467     mat[1][1] = 2.0*va[1]*vb[1];
468     mat[2][2] = 2.0*va[2]*vb[2];
469     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
470     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
471     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
472     }
473    
474    
475     /* Compute partial 3x3 Hessian matrix for edge */
476     static void
477     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
478     {
479 greg 2.35 FVECT ncp;
480 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
481     double d1, d2, d3, d4;
482     double I3, J3, K3;
483     int i, j;
484     /* compute intermediate coefficients */
485     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
486     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
487     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
488     d4 = DOT(ftp->e_i, ftp->r_i);
489 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
490     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
491 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
492     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
493     /* intermediate matrices */
494 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
495     compose_matrix(m1, ncp, ftp->rI2_eJ2);
496 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
497     compose_matrix(m3, ftp->e_i, ftp->e_i);
498     compose_matrix(m4, ftp->r_i, ftp->e_i);
499 greg 2.35 d1 = DOT(nrm, ftp->rcp);
500 greg 2.27 d2 = -d1*ftp->I2;
501     d1 *= 2.0;
502     for (i = 3; i--; ) /* final matrix sum */
503     for (j = 3; j--; ) {
504     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
505     2.0*J3*m4[i][j] );
506     hess[i][j] += d2*(i==j);
507 greg 2.46 hess[i][j] *= -1.0/PI;
508 greg 2.27 }
509     }
510    
511    
512     /* Reverse hessian calculation result for edge in other direction */
513     static void
514     rev_hessian(FVECT hess[3])
515     {
516     int i;
517    
518     for (i = 3; i--; ) {
519     hess[i][0] = -hess[i][0];
520     hess[i][1] = -hess[i][1];
521     hess[i][2] = -hess[i][2];
522     }
523     }
524    
525    
526     /* Add to radiometric Hessian from the given triangle */
527     static void
528     add2hessian(FVECT hess[3], FVECT ehess1[3],
529 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
530 greg 2.27 {
531     int i, j;
532    
533     for (i = 3; i--; )
534     for (j = 3; j--; )
535     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
536     }
537    
538    
539     /* Compute partial displacement form factor gradient for edge */
540     static void
541     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
542     {
543 greg 2.35 FVECT ncp;
544 greg 2.27 double f1;
545     int i;
546    
547 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
548     VCROSS(ncp, nrm, ftp->e_i);
549 greg 2.27 for (i = 3; i--; )
550 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
551 greg 2.27 }
552    
553    
554     /* Reverse gradient calculation result for edge in other direction */
555     static void
556     rev_gradient(FVECT grad)
557     {
558     grad[0] = -grad[0];
559     grad[1] = -grad[1];
560     grad[2] = -grad[2];
561     }
562    
563    
564     /* Add to displacement gradient from the given triangle */
565     static void
566 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
567 greg 2.27 {
568     int i;
569    
570     for (i = 3; i--; )
571     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
572     }
573    
574    
575     /* Compute anisotropic radii and eigenvector directions */
576 greg 2.53 static void
577 greg 2.27 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
578     {
579     double hess2[2][2];
580     FVECT a, b;
581     double evalue[2], slope1, xmag1;
582     int i;
583     /* project Hessian to sample plane */
584     for (i = 3; i--; ) {
585     a[i] = DOT(hessian[i], uv[0]);
586     b[i] = DOT(hessian[i], uv[1]);
587     }
588     hess2[0][0] = DOT(uv[0], a);
589     hess2[0][1] = DOT(uv[0], b);
590     hess2[1][0] = DOT(uv[1], a);
591     hess2[1][1] = DOT(uv[1], b);
592 greg 2.38 /* compute eigenvalue(s) */
593     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
594     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
595     if (i == 1) /* double-root (circle) */
596     evalue[1] = evalue[0];
597     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
598 greg 2.53 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
599     ra[0] = ra[1] = maxarad;
600     return;
601     }
602 greg 2.27 if (evalue[0] > evalue[1]) {
603 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
604     ra[1] = sqrt(sqrt(4.0/evalue[1]));
605 greg 2.27 slope1 = evalue[1];
606     } else {
607 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
608     ra[1] = sqrt(sqrt(4.0/evalue[0]));
609 greg 2.27 slope1 = evalue[0];
610     }
611     /* compute unit eigenvectors */
612     if (fabs(hess2[0][1]) <= FTINY)
613     return; /* uv OK as is */
614     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
615     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
616     for (i = 3; i--; ) {
617     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
618     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
619     }
620     VCOPY(uv[0], a);
621     VCOPY(uv[1], b);
622     }
623    
624    
625 greg 2.26 static void
626     ambHessian( /* anisotropic radii & pos. gradient */
627     AMBHEMI *hp,
628     FVECT uv[2], /* returned */
629 greg 2.28 float ra[2], /* returned (optional) */
630     float pg[2] /* returned (optional) */
631 greg 2.26 )
632     {
633 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
634     FVECT (*hessrow)[3] = NULL;
635     FVECT *gradrow = NULL;
636     FVECT hessian[3];
637     FVECT gradient;
638     FFTRI fftr;
639     int i, j;
640     /* be sure to assign unit vectors */
641     VCOPY(uv[0], hp->ux);
642     VCOPY(uv[1], hp->uy);
643     /* clock-wise vertex traversal from sample POV */
644     if (ra != NULL) { /* initialize Hessian row buffer */
645 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
646 greg 2.27 if (hessrow == NULL)
647     error(SYSTEM, memerrmsg);
648     memset(hessian, 0, sizeof(hessian));
649     } else if (pg == NULL) /* bogus call? */
650     return;
651     if (pg != NULL) { /* initialize form factor row buffer */
652 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
653 greg 2.27 if (gradrow == NULL)
654     error(SYSTEM, memerrmsg);
655     memset(gradient, 0, sizeof(gradient));
656     }
657     /* compute first row of edges */
658     for (j = 0; j < hp->ns-1; j++) {
659 greg 2.56 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
660 greg 2.27 if (hessrow != NULL)
661 greg 2.92 comp_hessian(hessrow[j], &fftr, hp->onrm);
662 greg 2.27 if (gradrow != NULL)
663 greg 2.92 comp_gradient(gradrow[j], &fftr, hp->onrm);
664 greg 2.27 }
665     /* sum each row of triangles */
666     for (i = 0; i < hp->ns-1; i++) {
667     FVECT hesscol[3]; /* compute first vertical edge */
668     FVECT gradcol;
669 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
670 greg 2.27 if (hessrow != NULL)
671 greg 2.92 comp_hessian(hesscol, &fftr, hp->onrm);
672 greg 2.27 if (gradrow != NULL)
673 greg 2.92 comp_gradient(gradcol, &fftr, hp->onrm);
674 greg 2.27 for (j = 0; j < hp->ns-1; j++) {
675     FVECT hessdia[3]; /* compute triangle contributions */
676     FVECT graddia;
677 greg 2.46 double backg;
678 greg 2.56 backg = back_ambval(hp, AI(hp,i,j),
679     AI(hp,i,j+1), AI(hp,i+1,j));
680 greg 2.27 /* diagonal (inner) edge */
681 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
682 greg 2.27 if (hessrow != NULL) {
683 greg 2.92 comp_hessian(hessdia, &fftr, hp->onrm);
684 greg 2.27 rev_hessian(hesscol);
685     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
686     }
687 greg 2.39 if (gradrow != NULL) {
688 greg 2.92 comp_gradient(graddia, &fftr, hp->onrm);
689 greg 2.27 rev_gradient(gradcol);
690     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
691     }
692     /* initialize edge in next row */
693 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
694 greg 2.27 if (hessrow != NULL)
695 greg 2.92 comp_hessian(hessrow[j], &fftr, hp->onrm);
696 greg 2.27 if (gradrow != NULL)
697 greg 2.92 comp_gradient(gradrow[j], &fftr, hp->onrm);
698 greg 2.27 /* new column edge & paired triangle */
699 greg 2.56 backg = back_ambval(hp, AI(hp,i+1,j+1),
700     AI(hp,i+1,j), AI(hp,i,j+1));
701     comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
702 greg 2.27 if (hessrow != NULL) {
703 greg 2.92 comp_hessian(hesscol, &fftr, hp->onrm);
704 greg 2.27 rev_hessian(hessdia);
705     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
706     if (i < hp->ns-2)
707     rev_hessian(hessrow[j]);
708     }
709     if (gradrow != NULL) {
710 greg 2.92 comp_gradient(gradcol, &fftr, hp->onrm);
711 greg 2.27 rev_gradient(graddia);
712     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
713     if (i < hp->ns-2)
714     rev_gradient(gradrow[j]);
715     }
716     }
717     }
718     /* release row buffers */
719     if (hessrow != NULL) free(hessrow);
720     if (gradrow != NULL) free(gradrow);
721    
722     if (ra != NULL) /* extract eigenvectors & radii */
723     eigenvectors(uv, ra, hessian);
724 greg 2.32 if (pg != NULL) { /* tangential position gradient */
725     pg[0] = DOT(gradient, uv[0]);
726     pg[1] = DOT(gradient, uv[1]);
727 greg 2.27 }
728     }
729    
730    
731     /* Compute direction gradient from a hemispherical sampling */
732     static void
733     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
734     {
735 greg 2.41 AMBSAMP *ap;
736     double dgsum[2];
737     int n;
738     FVECT vd;
739     double gfact;
740 greg 2.27
741 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
742 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
743     /* use vector for azimuth + 90deg */
744     VSUB(vd, ap->p, hp->rp->rop);
745 greg 2.29 /* brightness over cosine factor */
746 greg 2.92 gfact = ap->v[0] / DOT(hp->onrm, vd);
747 greg 2.40 /* sine = proj_radius/vd_length */
748     dgsum[0] -= DOT(uv[1], vd) * gfact;
749     dgsum[1] += DOT(uv[0], vd) * gfact;
750 greg 2.26 }
751 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
752     dg[1] = dgsum[1] / (hp->ns*hp->ns);
753 greg 2.26 }
754    
755 greg 2.27
756 greg 2.49 /* Compute potential light leak direction flags for cache value */
757     static uint32
758     ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
759 greg 2.47 {
760 greg 2.50 const double max_d = 1.0/(minarad*ambacc + 0.001);
761 greg 2.66 const double ang_res = 0.5*PI/hp->ns;
762     const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
763 greg 2.51 double avg_d = 0;
764 greg 2.50 uint32 flgs = 0;
765 greg 2.58 FVECT vec;
766 greg 2.62 double u, v;
767 greg 2.58 double ang, a1;
768 greg 2.50 int i, j;
769 greg 2.52 /* don't bother for a few samples */
770 greg 2.72 if (hp->ns < 8)
771 greg 2.52 return(0);
772     /* check distances overhead */
773 greg 2.51 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
774     for (j = hp->ns*3/4; j-- > hp->ns>>2; )
775     avg_d += ambsam(hp,i,j).d;
776     avg_d *= 4.0/(hp->ns*hp->ns);
777 greg 2.52 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
778     return(0);
779     if (avg_d >= max_d) /* insurance */
780 greg 2.51 return(0);
781     /* else circle around perimeter */
782 greg 2.47 for (i = 0; i < hp->ns; i++)
783     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
784     AMBSAMP *ap = &ambsam(hp,i,j);
785 greg 2.50 if ((ap->d <= FTINY) | (ap->d >= max_d))
786     continue; /* too far or too near */
787 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
788 greg 2.62 u = DOT(vec, uv[0]);
789     v = DOT(vec, uv[1]);
790     if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
791 greg 2.49 continue; /* occluder outside ellipse */
792     ang = atan2a(v, u); /* else set direction flags */
793 greg 2.66 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
794 greg 2.50 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
795 greg 2.47 }
796 greg 2.49 return(flgs);
797 greg 2.47 }
798    
799    
800 greg 2.26 int
801     doambient( /* compute ambient component */
802 greg 2.90 SCOLOR rcol, /* input/output color */
803 greg 2.26 RAY *r,
804 greg 2.92 double wt, /* negative for back side */
805 greg 2.27 FVECT uv[2], /* returned (optional) */
806     float ra[2], /* returned (optional) */
807     float pg[2], /* returned (optional) */
808 greg 2.49 float dg[2], /* returned (optional) */
809     uint32 *crlp /* returned (optional) */
810 greg 2.26 )
811     {
812 greg 2.61 AMBHEMI *hp = samp_hemi(rcol, r, wt);
813 greg 2.41 FVECT my_uv[2];
814 greg 2.61 double d, K;
815 greg 2.41 AMBSAMP *ap;
816 greg 2.61 int i;
817     /* clear return values */
818 greg 2.26 if (uv != NULL)
819     memset(uv, 0, sizeof(FVECT)*2);
820     if (ra != NULL)
821     ra[0] = ra[1] = 0.0;
822     if (pg != NULL)
823     pg[0] = pg[1] = 0.0;
824     if (dg != NULL)
825     dg[0] = dg[1] = 0.0;
826 greg 2.49 if (crlp != NULL)
827     *crlp = 0;
828 greg 2.61 if (hp == NULL) /* sampling falure? */
829     return(0);
830    
831     if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
832 greg 2.86 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
833 greg 2.61 free(hp); /* Hessian not requested/possible */
834     return(-1); /* value-only return value */
835 greg 2.26 }
836 greg 2.91 if ((d = scolor_mean(rcol)) > FTINY) {
837     d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
838 greg 2.38 K = 0.01;
839 greg 2.45 } else { /* or fall back on geometric Hessian */
840 greg 2.38 K = 1.0;
841     pg = NULL;
842     dg = NULL;
843 greg 2.53 crlp = NULL;
844 greg 2.38 }
845 greg 2.90 ap = hp->sa; /* single channel from here on... */
846 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
847 greg 2.90 ap->v[0] = scolor_mean(ap->v)*d + K;
848 greg 2.26
849     if (uv == NULL) /* make sure we have axis pointers */
850     uv = my_uv;
851     /* compute radii & pos. gradient */
852     ambHessian(hp, uv, ra, pg);
853 greg 2.29
854 greg 2.26 if (dg != NULL) /* compute direction gradient */
855     ambdirgrad(hp, uv, dg);
856 greg 2.29
857 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
858 greg 2.35 if (pg != NULL) {
859     if (ra[0]*(d = fabs(pg[0])) > 1.0)
860     ra[0] = 1.0/d;
861     if (ra[1]*(d = fabs(pg[1])) > 1.0)
862     ra[1] = 1.0/d;
863 greg 2.48 if (ra[0] > ra[1])
864     ra[0] = ra[1];
865 greg 2.35 }
866 greg 2.29 if (ra[0] < minarad) {
867     ra[0] = minarad;
868     if (ra[1] < minarad)
869     ra[1] = minarad;
870     }
871 greg 2.92 ra[0] *= d = 1.0/sqrt(fabs(wt));
872 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
873     ra[1] = 2.0*ra[0];
874 greg 2.28 if (ra[1] > maxarad) {
875     ra[1] = maxarad;
876     if (ra[0] > maxarad)
877     ra[0] = maxarad;
878     }
879 greg 2.53 /* flag encroached directions */
880 greg 2.87 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
881 greg 2.49 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
882 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
883     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
884     if (d > 1.0) {
885     d = 1.0/sqrt(d);
886     pg[0] *= d;
887     pg[1] *= d;
888     }
889     }
890 greg 2.26 }
891     free(hp); /* clean up and return */
892     return(1);
893     }