ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/genssky.c
Revision: 2.6
Committed: Wed Oct 9 17:22:42 2024 UTC (6 months, 3 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.5: +59 -25 lines
Log Message:
feat(genssky): Taoning added -L option to specify horiz. illuminance values

File Contents

# User Rev Content
1 greg 2.6 #include "color.h"
2 greg 2.2 #ifndef lint
3 greg 2.6 static const char RCSid[] =
4     "$Id: genssky.c,v 2.5 2024/08/19 18:07:44 greg Exp $";
5 greg 2.2 #endif
6     /* Main function for generating spectral sky */
7     /* Cloudy sky computed as weight average of clear and cie overcast sky */
8 greg 2.1
9 greg 2.2 #include "atmos.h"
10 greg 2.1 #include "copyright.h"
11     #include "resolu.h"
12 greg 2.2 #include "rtio.h"
13     #include <ctype.h>
14     #ifdef _WIN32
15     #include <windows.h>
16     #else
17     #include <errno.h>
18     #include <sys/stat.h>
19     #include <sys/types.h>
20     #endif
21 greg 2.1
22     char *progname;
23    
24     const double ARCTIC_LAT = 67.;
25     const double TROPIC_LAT = 23.;
26     const int SUMMER_START = 4;
27     const int SUMMER_END = 9;
28     const double GNORM = 0.777778;
29    
30     const double D65EFF = 203.; /* standard illuminant D65 */
31    
32 greg 2.2 /* Mean normalized relative daylight spectra where CCT = 6415K for overcast; */
33 greg 2.1 const double D6415[NSSAMP] = {0.63231, 1.06171, 1.00779, 1.36423, 1.34133,
34     1.27258, 1.26276, 1.26352, 1.22201, 1.13246,
35     1.0434, 1.05547, 0.98212, 0.94445, 0.9722,
36     0.82387, 0.87853, 0.82559, 0.75111, 0.78925};
37    
38 greg 2.2 /* European and North American zones */
39     struct {
40     char zname[8]; /* time zone name (all caps) */
41     float zmer; /* standard meridian */
42     } tzone[] = {{"YST", 135}, {"YDT", 120}, {"PST", 120}, {"PDT", 105},
43     {"MST", 105}, {"MDT", 90}, {"CST", 90}, {"CDT", 75},
44     {"EST", 75}, {"EDT", 60}, {"AST", 60}, {"ADT", 45},
45     {"NST", 52.5}, {"NDT", 37.5}, {"GMT", 0}, {"BST", -15},
46     {"CET", -15}, {"CEST", -30}, {"EET", -30}, {"EEST", -45},
47     {"AST", -45}, {"ADT", -60}, {"GST", -60}, {"GDT", -75},
48     {"IST", -82.5}, {"IDT", -97.5}, {"JST", -135}, {"NDT", -150},
49     {"NZST", -180}, {"NZDT", -195}, {"", 0}};
50    
51     static int make_directory(const char *path) {
52     #ifdef _WIN32
53     if (CreateDirectory(path, NULL) || GetLastError() == ERROR_ALREADY_EXISTS) {
54     return 1;
55     }
56     return 0;
57     #else
58     if (mkdir(path, 0777) == 0 || errno == EEXIST) {
59     return 1;
60     }
61     return 0;
62     #endif
63     }
64    
65 greg 2.3 inline static float deg2rad(float deg) { return deg * (PI / 180.); }
66    
67 greg 2.2 static int cvthour(char *hs, int *tsolar, double *hour) {
68     char *cp = hs;
69     int i, j;
70    
71     if ((*tsolar = *cp == '+'))
72     cp++; /* solar time? */
73     while (isdigit(*cp))
74     cp++;
75     if (*cp == ':')
76     *hour = atoi(hs) + atoi(++cp) / 60.0;
77     else {
78     *hour = atof(hs);
79     if (*cp == '.')
80     cp++;
81     }
82     while (isdigit(*cp))
83     cp++;
84     if (!*cp)
85     return (0);
86     if (*tsolar || !isalpha(*cp)) {
87     fprintf(stderr, "%s: bad time format: %s\n", progname, hs);
88     exit(1);
89     }
90     i = 0;
91     do {
92     for (j = 0; cp[j]; j++)
93     if (toupper(cp[j]) != tzone[i].zname[j])
94     break;
95     if (!cp[j] && !tzone[i].zname[j]) {
96     s_meridian = tzone[i].zmer * (PI / 180);
97     return (1);
98     }
99     } while (tzone[i++].zname[0]);
100    
101     fprintf(stderr, "%s: unknown time zone: %s\n", progname, cp);
102     fprintf(stderr, "Known time zones:\n\t%s", tzone[0].zname);
103     for (i = 1; tzone[i].zname[0]; i++)
104     fprintf(stderr, " %s", tzone[i].zname);
105     putc('\n', stderr);
106     exit(1);
107     }
108    
109     static void basename(const char *path, char *output, size_t outsize) {
110     const char *last_slash = strrchr(path, '/');
111     const char *last_backslash = strrchr(path, '\\');
112     const char *filename = path;
113     const char *last_dot;
114    
115     if (last_slash && last_backslash) {
116     filename =
117     (last_slash > last_backslash) ? last_slash + 1 : last_backslash + 1;
118     } else if (last_slash) {
119     filename = last_slash + 1;
120     } else if (last_backslash) {
121     filename = last_backslash + 1;
122     }
123    
124     last_dot = strrchr(filename, '.');
125     if (last_dot) {
126     size_t length = last_dot - filename;
127     if (length < outsize) {
128     strncpy(output, filename, length);
129     output[length] = '\0';
130     } else {
131     strncpy(output, filename, outsize - 1);
132     output[outsize - 1] = '\0';
133     }
134     }
135     }
136    
137 greg 2.3 static char *join_paths(const char *path1, const char *path2) {
138 greg 2.2 size_t len1 = strlen(path1);
139     size_t len2 = strlen(path2);
140     int need_separator = (path1[len1 - 1] != DIRSEP);
141    
142     char *result = malloc(len1 + len2 + (need_separator ? 2 : 1));
143     if (!result)
144     return NULL;
145    
146     strcpy(result, path1);
147     if (need_separator) {
148     result[len1] = DIRSEP;
149     len1++;
150     }
151     strcpy(result + len1, path2);
152    
153     return result;
154     }
155    
156 greg 2.1 static inline double wmean2(const double a, const double b, const double x) {
157     return a * (1 - x) + b * x;
158     }
159    
160     static inline double wmean(const double a, const double x, const double b,
161     const double y) {
162     return (a * x + b * y) / (a + b);
163     }
164    
165 greg 2.6 static double get_overcast_zenith_brightness(const double sundir[3]) {
166 greg 2.1 double zenithbr;
167     if (sundir[2] < 0) {
168     zenithbr = 0;
169     } else {
170     zenithbr = (8.6 * sundir[2] + .123) * 1000.0 / D65EFF;
171     }
172     return zenithbr;
173     }
174    
175 greg 2.2 /* from gensky.c */
176 greg 2.1 static double get_overcast_brightness(const double dz, const double zenithbr) {
177     double groundbr = zenithbr * GNORM;
178     return wmean(pow(dz + 1.01, 10), zenithbr * (1 + 2 * dz) / 3,
179     pow(dz + 1.01, -10), groundbr);
180     }
181    
182 greg 2.2 static void write_header(const int argc, char **argv, const double cloud_cover,
183     const double grefl, const int res) {
184 greg 2.4 int i;
185 greg 2.2 printf("# ");
186 greg 2.4 for (i = 0; i < argc; i++) {
187 greg 2.2 printf("%s ", argv[i]);
188     }
189     printf("\n");
190 greg 2.3 printf(
191     "#Cloud cover: %g\n#Ground reflectance: %g\n#Sky map resolution: %d\n\n",
192     cloud_cover, grefl, res);
193 greg 2.2 }
194    
195 greg 2.6 static void write_rad(const double *sun_radiance, const double intensity,
196     const FVECT sundir, const char *ddir,
197     const char *skyfile) {
198 greg 2.1 if (sundir[2] > 0) {
199 greg 2.2 printf("void spectrum sunrad\n0\n0\n22 380 780 ");
200 greg 2.4 int i;
201     for (i = 0; i < NSSAMP; ++i) {
202 greg 2.6 printf("%.3f ", sun_radiance[i]);
203 greg 2.1 }
204 greg 2.2 printf("\n\nsunrad light solar\n0\n0\n3 %.1f %.1f %.1f\n\n", intensity,
205     intensity, intensity);
206     printf("solar source sun\n0\n0\n4 %f %f %f 0.533\n\n", sundir[0], sundir[1],
207     sundir[2]);
208     }
209 greg 2.5 printf("void specpict skyfunc\n5 noop %s . 'Atan2(Dy,Dx)/PI+1' "
210     "'1-Acos(Dz)/PI'\n0\n0\n\n",
211 greg 2.2 skyfile);
212 greg 2.1 }
213    
214     static void write_hsr_header(FILE *fp, RESOLU *res) {
215 greg 2.3 float wvsplit[4] = {380, 480, 588, 780};
216 greg 2.1 newheader("RADIANCE", fp);
217     fputncomp(NSSAMP, fp);
218     fputwlsplit(wvsplit, fp);
219     fputformat(SPECFMT, fp);
220     fputc('\n', fp);
221     fputsresolu(res, fp);
222     }
223    
224 greg 2.3 static inline float frac(float x) { return x - floor(x); }
225    
226 greg 2.1 int gen_spect_sky(DATARRAY *tau_clear, DATARRAY *scat_clear,
227     DATARRAY *scat1m_clear, DATARRAY *irrad_clear,
228     const double cloud_cover, const FVECT sundir,
229 greg 2.3 const double grefl, const int res, const char *outname,
230 greg 2.6 const char *ddir, const double dirnorm, const double difhor) {
231 greg 2.1 char skyfile[PATH_MAX];
232 greg 2.3 if (!snprintf(skyfile, sizeof(skyfile), "%s%c%s_sky.hsr", ddir, DIRSEP,
233     outname)) {
234 greg 2.1 fprintf(stderr, "Error setting sky file name\n");
235     return 0;
236     };
237 greg 2.3 int xres = res;
238     int yres = xres / 2;
239     RESOLU rs = {PIXSTANDARD, xres, yres};
240 greg 2.1 FILE *skyfp = fopen(skyfile, "w");
241     write_hsr_header(skyfp, &rs);
242    
243     CNDX[3] = NSSAMP;
244    
245 greg 2.3 FVECT view_point = {0, 0, ER + 10};
246 greg 2.1 const double radius = VLEN(view_point);
247     const double sun_ct = fdot(view_point, sundir) / radius;
248 greg 2.6
249     double overcast_zenithbr = get_overcast_zenith_brightness(sundir);
250     double overcast_grndbr = overcast_zenithbr * GNORM;
251    
252     double dif_ratio = 1;
253     if (difhor > 0) {
254     DATARRAY *indirect_irradiance_clear = get_indirect_irradiance(irrad_clear, radius, sun_ct);
255     double overcast_ghi = overcast_zenithbr * 7.0 * PI / 9.0;
256     double diffuse_irradiance = 0;
257     int l;
258     for (l = 0; l < NSSAMP; ++l) {
259     diffuse_irradiance += indirect_irradiance_clear->arr.d[l] * 20; /* 20nm interval */
260     }
261     free(indirect_irradiance_clear);
262     diffuse_irradiance = wmean2(diffuse_irradiance, overcast_ghi, cloud_cover);
263     dif_ratio = difhor / WHTEFFICACY / diffuse_irradiance / 1.15; /* fudge */
264     }
265 greg 2.4 int i, j, k;
266     for (j = 0; j < yres; ++j) {
267     for (i = 0; i < xres; ++i) {
268 greg 2.3 SCOLOR radiance = {0};
269 greg 2.1 SCOLR sky_sclr = {0};
270    
271 greg 2.3 float px = i / (xres - 1.0);
272     float py = j / (yres - 1.0);
273     float lambda = ((1 - py) * PI) - (PI / 2.0);
274     float phi = (px * 2.0 * PI) - PI;
275    
276     FVECT rdir = {cos(lambda) * cos(phi), cos(lambda) * sin(phi),
277     sin(lambda)};
278    
279     const double mu = fdot(view_point, rdir) / radius;
280     const double nu = fdot(rdir, sundir);
281    
282     /* hit ground */
283     if (rdir[2] < 0) {
284     get_ground_radiance(tau_clear, scat_clear, scat1m_clear, irrad_clear,
285     view_point, rdir, radius, mu, sun_ct, nu, grefl,
286     sundir, radiance);
287     } else {
288     get_sky_radiance(scat_clear, scat1m_clear, radius, mu, sun_ct, nu,
289     radiance);
290     }
291 greg 2.1
292 greg 2.4 for (k = 0; k < NSSAMP; ++k) {
293 greg 2.3 radiance[k] *= WVLSPAN;
294 greg 2.1 }
295    
296     if (cloud_cover > 0) {
297 greg 2.6 double skybr = get_overcast_brightness(rdir[2], overcast_zenithbr);
298 greg 2.3 if (rdir[2] < 0) {
299 greg 2.4 for (k = 0; k < NSSAMP; ++k) {
300 greg 2.6 radiance[k] = wmean2(radiance[k], overcast_grndbr * D6415[k], cloud_cover);
301 greg 2.3 }
302     } else {
303 greg 2.4 for (k = 0; k < NSSAMP; ++k) {
304 greg 2.3 radiance[k] = wmean2(radiance[k], skybr * D6415[k], cloud_cover);
305     }
306 greg 2.1 }
307     }
308    
309 greg 2.6 for (k = 0; k < NSSAMP; ++k) {
310     radiance[k] *= dif_ratio;
311     }
312    
313     scolor2scolr(sky_sclr, radiance, NSSAMP);
314 greg 2.1 putbinary(sky_sclr, LSCOLR, 1, skyfp);
315     }
316     }
317     fclose(skyfp);
318    
319 greg 2.2 /* Get solar radiance */
320 greg 2.1 double sun_radiance[NSSAMP] = {0};
321     get_solar_radiance(tau_clear, scat_clear, scat1m_clear, sundir, radius,
322     sun_ct, sun_radiance);
323     if (cloud_cover > 0) {
324 greg 2.6 double skybr = get_overcast_brightness(sundir[2], overcast_zenithbr);
325 greg 2.4 int i;
326     for (i = 0; i < NSSAMP; ++i) {
327 greg 2.1 sun_radiance[i] =
328     wmean2(sun_radiance[i], D6415[i] * skybr / WVLSPAN, cloud_cover);
329     }
330     }
331    
332 greg 2.6 /* Normalize */
333     double sum = 0.0;
334     for (i = 0; i < NSSAMP; ++i) {
335     sum += sun_radiance[i];
336     }
337     double mean = sum / NSSAMP;
338     for (i = 0; i < NSSAMP; ++i) {
339     sun_radiance[i] /= mean;
340     }
341     double intensity = mean * WVLSPAN;
342     if (dirnorm > 0) {
343     intensity = dirnorm / SOLOMG / WHTEFFICACY;
344     }
345    
346     write_rad(sun_radiance, intensity, sundir, ddir, skyfile);
347 greg 2.1 return 1;
348     }
349    
350 greg 2.2 static DpPaths get_dppaths(const char *dir, const double aod, const char *mname,
351     const char *tag) {
352 greg 2.1 DpPaths paths;
353    
354 greg 2.2 snprintf(paths.tau, PATH_MAX, "%s%ctau_%s_%s_%.2f.dat", dir, DIRSEP, tag,
355     mname, aod);
356     snprintf(paths.scat, PATH_MAX, "%s%cscat_%s_%s_%.2f.dat", dir, DIRSEP, tag,
357     mname, aod);
358     snprintf(paths.scat1m, PATH_MAX, "%s%cscat1m_%s_%s_%.2f.dat", dir, DIRSEP,
359     tag, mname, aod);
360     snprintf(paths.irrad, PATH_MAX, "%s%cirrad_%s_%s_%.2f.dat", dir, DIRSEP, tag,
361     mname, aod);
362 greg 2.1
363     return paths;
364     }
365    
366 greg 2.2 static void set_rayleigh_density_profile(Atmosphere *atmos, char *tag,
367     const int is_summer,
368 greg 2.1 const double s_latitude) {
369 greg 2.2 if (fabs(s_latitude * 180.0 / PI) > ARCTIC_LAT) {
370 greg 2.1 tag[0] = 's';
371     if (is_summer) {
372     tag[1] = 's';
373     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SS;
374     atmos->beta_r0 = BR0_SS;
375     } else {
376     tag[1] = 'w';
377     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_SW;
378     atmos->beta_r0 = BR0_SW;
379     }
380 greg 2.2 } else if (fabs(s_latitude * 180.0 / PI) > TROPIC_LAT) {
381 greg 2.1 tag[0] = 'm';
382     if (is_summer) {
383     tag[1] = 's';
384     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MS;
385     atmos->beta_r0 = BR0_MS;
386     } else {
387     tag[1] = 'w';
388     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_MW;
389     atmos->beta_r0 = BR0_MW;
390     }
391     } else {
392     tag[0] = 't';
393     tag[1] = 'r';
394     atmos->rayleigh_density.layers[0].exp_scale = -1.0 / HR_T;
395     atmos->beta_r0 = BR0_T;
396     }
397     tag[2] = '\0';
398     }
399    
400     static Atmosphere init_atmos(const double aod, const double grefl) {
401 greg 2.2 Atmosphere atmos = {.ozone_density = {.layers =
402     {
403     {.width = 25000.0,
404     .exp_term = 0.0,
405     .exp_scale = 0.0,
406     .linear_term = 1.0 / 15000.0,
407     .constant_term = -2.0 / 3.0},
408     {.width = AH,
409     .exp_term = 0.0,
410     .exp_scale = 0.0,
411     .linear_term = -1.0 / 15000.0,
412     .constant_term = 8.0 / 3.0},
413     }},
414     .rayleigh_density = {.layers =
415     {
416     {.width = AH,
417     .exp_term = 1.0,
418     .exp_scale = -1.0 / HR_MS,
419     .linear_term = 0.0,
420     .constant_term = 0.0},
421     }},
422     .beta_r0 = BR0_MS,
423     .beta_scale = aod / AOD0_CA,
424     .beta_m = NULL,
425     .grefl = grefl};
426 greg 2.1 return atmos;
427     }
428    
429     int main(int argc, char *argv[]) {
430     progname = argv[0];
431     int month, day;
432     double hour;
433     FVECT sundir;
434     int num_threads = 1;
435     int sorder = 4;
436     int year = 0;
437     int tsolar = 0;
438 greg 2.2 int got_meridian = 0;
439 greg 2.1 double grefl = 0.2;
440     double ccover = 0.0;
441 greg 2.3 int res = 64;
442 greg 2.1 double aod = AOD0_CA;
443     char *outname = "out";
444     char *mie_path = getpath("mie_ca.dat", getrlibpath(), R_OK);
445 greg 2.2 char mie_name[20] = "mie_ca";
446 greg 2.1 char lstag[3];
447 greg 2.2 char *ddir = ".";
448 greg 2.4 int i;
449 greg 2.6 double dirnorm = 0; /* direct normal illuminance */
450     double difhor = 0; /* diffuse horizontal illuminance */
451 greg 2.2
452 greg 2.3 if (argc == 2 && !strcmp(argv[1], "-defaults")) {
453 greg 2.2 printf("-i %d\t\t\t\t#scattering order\n", sorder);
454     printf("-g %f\t\t\t#ground reflectance\n", grefl);
455     printf("-c %f\t\t\t#cloud cover\n", ccover);
456     printf("-r %d\t\t\t\t#image resolution\n", res);
457     printf("-d %f\t\t\t#broadband aerosol optical depth\n", AOD0_CA);
458     printf("-f %s\t\t\t\t#output name (-f)\n", outname);
459     printf("-p %s\t\t\t\t#atmos data directory\n", ddir);
460 greg 2.3 exit(0);
461 greg 2.2 }
462 greg 2.1
463     if (argc < 4) {
464 greg 2.2 fprintf(stderr,
465     "Usage: %s month day hour -y year -a lat -o lon -m tz -d aod -r "
466 greg 2.6 "res -n nproc -c ccover -l mie -L dirnorm_illum difhor_illum "
467     "-g grefl -f outpath\n",
468 greg 2.1 argv[0]);
469     return 0;
470     }
471    
472     month = atoi(argv[1]);
473 greg 2.2 if (month < 1 || month > 12) {
474     fprintf(stderr, "bad month");
475     exit(1);
476     }
477 greg 2.1 day = atoi(argv[2]);
478 greg 2.2 if (day < 1 || day > 31) {
479     fprintf(stderr, "bad month");
480     exit(1);
481     }
482     got_meridian = cvthour(argv[3], &tsolar, &hour);
483 greg 2.1
484     if (!compute_sundir(year, month, day, hour, tsolar, sundir)) {
485     fprintf(stderr, "Cannot compute solar angle\n");
486     exit(1);
487     }
488    
489 greg 2.4 for (i = 4; i < argc; i++) {
490 greg 2.1 if (argv[i][0] == '-') {
491     switch (argv[i][1]) {
492     case 'a':
493     s_latitude = atof(argv[++i]) * (PI / 180.0);
494     break;
495     case 'c':
496     ccover = atof(argv[++i]);
497     break;
498     case 'd':
499     aod = atof(argv[++i]);
500     break;
501 greg 2.2 case 'f':
502     outname = argv[++i];
503     break;
504     case 'g':
505     grefl = atof(argv[++i]);
506     break;
507 greg 2.1 case 'i':
508     sorder = atoi(argv[++i]);
509     break;
510     case 'l':
511     mie_path = argv[++i];
512 greg 2.2 basename(mie_path, mie_name, sizeof(mie_name));
513 greg 2.1 break;
514     case 'm':
515 greg 2.2 if (got_meridian) {
516     ++i;
517     break;
518     }
519 greg 2.1 s_meridian = atof(argv[++i]) * (PI / 180.0);
520     break;
521     case 'n':
522     num_threads = atoi(argv[++i]);
523     break;
524 greg 2.2 case 'o':
525     s_longitude = atof(argv[++i]) * (PI / 180.0);
526 greg 2.1 break;
527 greg 2.6 case 'L':
528     dirnorm = atof(argv[++i]);
529     difhor = atof(argv[++i]);
530     break;
531 greg 2.2 case 'p':
532     ddir = argv[++i];
533 greg 2.1 break;
534     case 'r':
535     res = atoi(argv[++i]);
536     break;
537 greg 2.2 case 'y':
538     year = atoi(argv[++i]);
539     break;
540 greg 2.1 default:
541     fprintf(stderr, "Unknown option %s\n", argv[i]);
542     exit(1);
543     }
544     }
545     }
546 greg 2.2 if (year && (year < 1950) | (year > 2050))
547     fprintf(stderr, "%s: warning - year should be in range 1950-2050\n",
548     progname);
549     if (month && !tsolar && fabs(s_meridian - s_longitude) > 45 * PI / 180)
550     fprintf(stderr,
551     "%s: warning - %.1f hours btwn. standard meridian and longitude\n",
552     progname, (s_longitude - s_meridian) * 12 / PI);
553 greg 2.1
554     Atmosphere clear_atmos = init_atmos(aod, grefl);
555    
556     int is_summer = (month >= SUMMER_START && month <= SUMMER_END);
557     if (s_latitude < 0) {
558     is_summer = !is_summer;
559     }
560     set_rayleigh_density_profile(&clear_atmos, lstag, is_summer, s_latitude);
561    
562 greg 2.2 /* Load mie density data */
563 greg 2.1 DATARRAY *mie_dp = getdata(mie_path);
564     if (mie_dp == NULL) {
565     fprintf(stderr, "Error reading mie data\n");
566     return 0;
567     }
568     clear_atmos.beta_m = mie_dp;
569    
570 greg 2.2 char gsdir[PATH_MAX];
571     size_t siz = strlen(ddir);
572 greg 2.3 if (ISDIRSEP(ddir[siz - 1]))
573     ddir[siz - 1] = '\0';
574 greg 2.2 snprintf(gsdir, PATH_MAX, "%s%catmos_data", ddir, DIRSEP);
575     if (!make_directory(gsdir)) {
576     fprintf(stderr, "Failed creating atmos_data directory");
577     exit(1);
578     }
579     DpPaths clear_paths = get_dppaths(gsdir, aod, mie_name, lstag);
580 greg 2.1
581     if (getpath(clear_paths.tau, ".", R_OK) == NULL ||
582     getpath(clear_paths.scat, ".", R_OK) == NULL ||
583     getpath(clear_paths.scat1m, ".", R_OK) == NULL ||
584     getpath(clear_paths.irrad, ".", R_OK) == NULL) {
585 greg 2.2 printf("# Pre-computing...\n");
586 greg 2.1 if (!precompute(sorder, clear_paths, &clear_atmos, num_threads)) {
587 greg 2.2 fprintf(stderr, "Pre-compute failed\n");
588 greg 2.1 return 0;
589     }
590     }
591    
592     DATARRAY *tau_clear_dp = getdata(clear_paths.tau);
593     DATARRAY *irrad_clear_dp = getdata(clear_paths.irrad);
594     DATARRAY *scat_clear_dp = getdata(clear_paths.scat);
595     DATARRAY *scat1m_clear_dp = getdata(clear_paths.scat1m);
596    
597 greg 2.2 write_header(argc, argv, ccover, grefl, res);
598    
599 greg 2.1 if (!gen_spect_sky(tau_clear_dp, scat_clear_dp, scat1m_clear_dp,
600 greg 2.6 irrad_clear_dp, ccover, sundir, grefl, res, outname, ddir,
601     dirnorm, difhor)) {
602 greg 2.1 fprintf(stderr, "gen_spect_sky failed\n");
603     exit(1);
604     }
605    
606     freedata(mie_dp);
607     freedata(tau_clear_dp);
608     freedata(scat_clear_dp);
609     freedata(irrad_clear_dp);
610     freedata(scat1m_clear_dp);
611    
612     return 1;
613     }