ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.34
Committed: Tue Jan 7 01:42:30 2020 UTC (4 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.33: +46 -11 lines
Log Message:
Added -n and -D options to gendaymtx

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.34 static const char RCSid[] = "$Id: gendaymtx.c,v 2.33 2020/01/06 21:22:46 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * gendaymtx.c
6     *
7     * Generate a daylight matrix based on Perez Sky Model.
8     *
9     * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10     * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11     *
12     * Created by Greg Ward on 1/16/13.
13     */
14    
15     /*********************************************************************
16     *
17     * H32_gendaylit.CPP - Perez Sky Model Calculation
18     *
19     * Version: 1.00A
20     *
21     * History: 09/10/01 - Created.
22     * 11/10/08 - Modified for Unix compilation.
23     * 11/10/12 - Fixed conditional __max directive.
24     * 1/11/13 - Tweaks and optimizations (G.Ward)
25     *
26     * Compilers: Microsoft Visual C/C++ Professional V10.0
27     *
28     * Author: Ian Ashdown, P.Eng.
29     * byHeart Consultants Limited
30     * 620 Ballantree Road
31     * West Vancouver, B.C.
32     * Canada V7S 1W3
33     * e-mail: [email protected]
34     *
35     * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36     * Stewart. 1990. ìModeling Daylight Availability and
37     * Irradiance Components from Direct and Global
38     * Irradiance,î Solar Energy 44(5):271-289.
39     *
40     * Perez, R., R. Seals, and J. Michalsky. 1993.
41     * ìAll-Weather Model for Sky Luminance Distribution -
42     * Preliminary Configuration and Validation,î Solar Energy
43     * 50(3):235-245.
44     *
45     * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46     * All-Weather Model for Sky Luminance Distribution -
47     * Preliminary Configuration and Validation,î Solar Energy
48     * 51(5):423.
49     *
50     * NOTE: This program is a completely rewritten version of
51     * gendaylit.c written by Jean-Jacques Delaunay (1994).
52     *
53     * Copyright 2009-2012 byHeart Consultants Limited. All rights
54     * reserved.
55     *
56     * Redistribution and use in source and binary forms, with or without
57     * modification, are permitted for personal and commercial purposes
58     * provided that redistribution of source code must retain the above
59     * copyright notice, this list of conditions and the following
60     * disclaimer:
61     *
62     * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65     * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66     * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70     * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73     * POSSIBILITY OF SUCH DAMAGE.
74     *
75     *********************************************************************/
76    
77     /* Zenith is along the Z-axis */
78     /* X-axis points east */
79     /* Y-axis points north */
80     /* azimuth is measured as degrees or radians east of North */
81    
82     /* Include files */
83     #define _USE_MATH_DEFINES
84     #include <stdlib.h>
85     #include <ctype.h>
86 greg 2.30 #include "platform.h"
87 greg 2.1 #include "rtmath.h"
88 greg 2.23 #include "rtio.h"
89 greg 2.1 #include "color.h"
90 greg 2.30 #include "sun.h"
91 greg 2.1
92     char *progname; /* Program name */
93     char errmsg[128]; /* Error message buffer */
94     const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
95     const double DC_SolarConstantL = 127.5; /* Solar constant klux */
96    
97     double altitude; /* Solar altitude (radians) */
98     double azimuth; /* Solar azimuth (radians) */
99     double apwc; /* Atmospheric precipitable water content */
100     double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
101     double diff_illum; /* Diffuse illuminance */
102     double diff_irrad; /* Diffuse irradiance */
103     double dir_illum; /* Direct illuminance */
104     double dir_irrad; /* Direct irradiance */
105     int julian_date; /* Julian date */
106     double perez_param[5]; /* Perez sky model parameters */
107     double sky_brightness; /* Sky brightness */
108     double sky_clearness; /* Sky clearness */
109     double solar_rad; /* Solar radiance */
110     double sun_zenith; /* Sun zenith angle (radians) */
111     int input = 0; /* Input type */
112 greg 2.11 int output = 0; /* Output type */
113 greg 2.1
114     extern double dmax( double, double );
115     extern double CalcAirMass();
116     extern double CalcDiffuseIllumRatio( int );
117     extern double CalcDiffuseIrradiance();
118     extern double CalcDirectIllumRatio( int );
119     extern double CalcDirectIrradiance();
120     extern double CalcEccentricity();
121     extern double CalcPrecipWater( double );
122     extern double CalcRelHorzIllum( float *parr );
123     extern double CalcRelLuminance( double, double );
124     extern double CalcSkyBrightness();
125     extern double CalcSkyClearness();
126     extern int CalcSkyParamFromIllum();
127     extern int GetCategoryIndex();
128     extern void CalcPerezParam( double, double, double, int );
129     extern void CalcSkyPatchLumin( float *parr );
130     extern void ComputeSky( float *parr );
131    
132     /* Degrees into radians */
133     #define DegToRad(deg) ((deg)*(PI/180.))
134    
135     /* Radiuans into degrees */
136     #define RadToDeg(rad) ((rad)*(180./PI))
137    
138    
139     /* Perez sky model coefficients */
140    
141     /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
142     /* Weather Model for Sky Luminance Distribution - */
143     /* Preliminary Configuration and Validation," Solar */
144     /* Energy 50(3):235-245, Table 1. */
145    
146     static const double PerezCoeff[8][20] =
147     {
148     /* Sky clearness (epsilon): 1.000 to 1.065 */
149     { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
150     0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
151     1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
152     0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
153     /* Sky clearness (epsilon): 1.065 to 1.230 */
154     { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
155     0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
156     6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
157     0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
158     /* Sky clearness (epsilon): 1.230 to 1.500 */
159     { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
160     -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
161     -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
162     -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
163     /* Sky clearness (epsilon): 1.500 to 1.950 */
164     { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
165     -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
166     -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
167     0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
168     /* Sky clearness (epsilon): 1.950 to 2.800 */
169     { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
170     0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
171     -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
172     0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
173     /* Sky clearness (epsilon): 2.800 to 4.500 */
174     { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
175     -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
176     -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
177     1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
178     /* Sky clearness (epsilon): 4.500 to 6.200 */
179     { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
180     0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
181     1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
182     0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
183     /* Sky clearness (epsilon): 6.200 to ... */
184     { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
185     0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
186     -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
187     0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
188     };
189    
190     /* Perez irradiance component model coefficients */
191    
192     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
193     /* Stewart. 1990. ìModeling Daylight Availability and */
194     /* Irradiance Components from Direct and Global */
195     /* Irradiance,î Solar Energy 44(5):271-289. */
196    
197     typedef struct
198     {
199     double lower; /* Lower bound */
200     double upper; /* Upper bound */
201     } CategoryBounds;
202    
203     /* Perez sky clearness (epsilon) categories (Table 1) */
204     static const CategoryBounds SkyClearCat[8] =
205     {
206     { 1.000, 1.065 }, /* Overcast */
207     { 1.065, 1.230 },
208     { 1.230, 1.500 },
209     { 1.500, 1.950 },
210     { 1.950, 2.800 },
211     { 2.800, 4.500 },
212     { 4.500, 6.200 },
213 greg 2.12 { 6.200, 12.01 } /* Clear */
214 greg 2.1 };
215    
216     /* Luminous efficacy model coefficients */
217     typedef struct
218     {
219     double a;
220     double b;
221     double c;
222     double d;
223     } ModelCoeff;
224    
225     /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
226     static const ModelCoeff DiffuseLumEff[8] =
227     {
228     { 97.24, -0.46, 12.00, -8.91 },
229     { 107.22, 1.15, 0.59, -3.95 },
230     { 104.97, 2.96, -5.53, -8.77 },
231     { 102.39, 5.59, -13.95, -13.90 },
232     { 100.71, 5.94, -22.75, -23.74 },
233     { 106.42, 3.83, -36.15, -28.83 },
234     { 141.88, 1.90, -53.24, -14.03 },
235     { 152.23, 0.35, -45.27, -7.98 }
236     };
237    
238     /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
239     static const ModelCoeff DirectLumEff[8] =
240     {
241     { 57.20, -4.55, -2.98, 117.12 },
242     { 98.99, -3.46, -1.21, 12.38 },
243     { 109.83, -4.90, -1.71, -8.81 },
244     { 110.34, -5.84, -1.99, -4.56 },
245     { 106.36, -3.97, -1.75, -6.16 },
246     { 107.19, -1.25, -1.51, -26.73 },
247     { 105.75, 0.77, -1.26, -34.44 },
248     { 101.18, 1.58, -1.10, -8.29 }
249     };
250    
251 greg 2.3 #ifndef NSUNPATCH
252 greg 2.10 #define NSUNPATCH 4 /* max. # patches to spread sun into */
253 greg 2.3 #endif
254    
255 greg 2.10 int nsuns = NSUNPATCH; /* number of sun patches to use */
256     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
257    
258 greg 2.1 int verbose = 0; /* progress reports to stderr? */
259    
260     int outfmt = 'a'; /* output format */
261    
262     int rhsubdiv = 1; /* Reinhart sky subdivisions */
263    
264 greg 2.4 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
265     COLOR suncolor = {1., 1., 1.}; /* sun color */
266     COLOR grefl = {.2, .2, .2}; /* ground reflectance */
267 greg 2.1
268     int nskypatch; /* number of Reinhart patches */
269     float *rh_palt; /* sky patch altitudes (radians) */
270     float *rh_pazi; /* sky patch azimuths (radians) */
271     float *rh_dom; /* sky patch solid angle (sr) */
272    
273     #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
274     (v)[0] = (v)[1]*tsin(azi), \
275     (v)[1] *= tcos(azi), \
276     (v)[2] = tsin(alt) )
277    
278     #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
279    
280     #define rh_cos(i) tsin(rh_palt[i])
281    
282     extern int rh_init(void);
283     extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
284     extern void AddDirect(float *parr);
285    
286 greg 2.14
287     static const char *
288     getfmtname(int fmt)
289     {
290     switch (fmt) {
291     case 'a':
292     return("ascii");
293     case 'f':
294     return("float");
295     case 'd':
296     return("double");
297     }
298     return("unknown");
299     }
300    
301    
302 greg 2.1 int
303     main(int argc, char *argv[])
304     {
305     char buf[256];
306 greg 2.14 int doheader = 1; /* output header? */
307 greg 2.8 double rotation = 0; /* site rotation (degrees) */
308 greg 2.1 double elevation; /* site elevation (meters) */
309     int dir_is_horiz; /* direct is meas. on horizontal? */
310 greg 2.34 FILE *sunsfp = NULL; /* output file for individual suns */
311 greg 2.1 float *mtx_data = NULL; /* our matrix data */
312 greg 2.28 int avgSky = 0; /* compute average sky r.t. matrix? */
313 greg 2.27 int ntsteps = 0; /* number of time steps */
314 greg 2.28 int tstorage = 0; /* number of allocated time steps */
315     int nstored = 0; /* number of time steps in matrix */
316 greg 2.1 int last_monthly = 0; /* month of last report */
317     int mo, da; /* month (1-12) and day (1-31) */
318     double hr; /* hour (local standard time) */
319     double dir, dif; /* direct and diffuse values */
320     int mtx_offset;
321     int i, j;
322    
323     progname = argv[0];
324     /* get options */
325     for (i = 1; i < argc && argv[i][0] == '-'; i++)
326     switch (argv[i][1]) {
327 greg 2.4 case 'g': /* ground reflectance */
328     grefl[0] = atof(argv[++i]);
329     grefl[1] = atof(argv[++i]);
330     grefl[2] = atof(argv[++i]);
331 greg 2.1 break;
332 greg 2.4 case 'v': /* verbose progress reports */
333 greg 2.1 verbose++;
334     break;
335 greg 2.14 case 'h': /* turn off header */
336     doheader = 0;
337     break;
338 greg 2.4 case 'o': /* output format */
339 greg 2.1 switch (argv[i][2]) {
340     case 'f':
341     case 'd':
342     case 'a':
343     outfmt = argv[i][2];
344     break;
345     default:
346     goto userr;
347     }
348     break;
349 greg 2.11 case 'O': /* output type */
350     switch (argv[i][2]) {
351     case '0':
352     output = 0;
353     break;
354     case '1':
355     output = 1;
356     break;
357     default:
358     goto userr;
359     }
360     if (argv[i][3])
361     goto userr;
362     break;
363 greg 2.4 case 'm': /* Reinhart subdivisions */
364 greg 2.1 rhsubdiv = atoi(argv[++i]);
365     break;
366 greg 2.4 case 'c': /* sky color */
367 greg 2.1 skycolor[0] = atof(argv[++i]);
368     skycolor[1] = atof(argv[++i]);
369     skycolor[2] = atof(argv[++i]);
370     break;
371 greg 2.34 case 'n': /* no matrix output */
372     avgSky = -1;
373     rhsubdiv = 1;
374     /* fall through */
375 greg 2.4 case 'd': /* solar (direct) only */
376 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 0;
377 greg 2.33 grefl[0] = grefl[1] = grefl[2] = 0;
378 greg 2.1 break;
379 greg 2.34 case 'D': /* output suns to file */
380     sunsfp = fopen(argv[++i], "w");
381     if (!sunsfp) {
382     fprintf(stderr, "%s: cannot open '%s' for output\n",
383     argv[0], argv[i]);
384     exit(1);
385     }
386     fixed_sun_sa = PI/360.*0.533;
387     fixed_sun_sa *= PI*fixed_sun_sa;
388     break;
389 greg 2.4 case 's': /* sky only (no direct) */
390     suncolor[0] = suncolor[1] = suncolor[2] = 0;
391 greg 2.1 break;
392 greg 2.8 case 'r': /* rotate distribution */
393     if (argv[i][2] && argv[i][2] != 'z')
394     goto userr;
395     rotation = atof(argv[++i]);
396     break;
397 greg 2.10 case '5': /* 5-phase calculation */
398     nsuns = 1;
399 greg 2.19 fixed_sun_sa = PI/360.*atof(argv[++i]);
400 greg 2.21 if (fixed_sun_sa <= 0) {
401     fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
402     argv[0]);
403     exit(1);
404     }
405 greg 2.19 fixed_sun_sa *= fixed_sun_sa*PI;
406 greg 2.10 break;
407 greg 2.27 case 'A': /* compute average sky */
408     avgSky = 1;
409     break;
410 greg 2.1 default:
411     goto userr;
412     }
413     if (i < argc-1)
414     goto userr;
415     if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
416     fprintf(stderr, "%s: cannot open '%s' for input\n",
417     progname, argv[i]);
418     exit(1);
419     }
420     if (verbose) {
421     if (i == argc-1)
422     fprintf(stderr, "%s: reading weather tape '%s'\n",
423     progname, argv[i]);
424     else
425     fprintf(stderr, "%s: reading weather tape from <stdin>\n",
426     progname);
427     }
428     /* read weather tape header */
429 greg 2.2 if (scanf("place %[^\r\n] ", buf) != 1)
430 greg 2.1 goto fmterr;
431     if (scanf("latitude %lf\n", &s_latitude) != 1)
432     goto fmterr;
433     if (scanf("longitude %lf\n", &s_longitude) != 1)
434     goto fmterr;
435     if (scanf("time_zone %lf\n", &s_meridian) != 1)
436     goto fmterr;
437     if (scanf("site_elevation %lf\n", &elevation) != 1)
438     goto fmterr;
439     if (scanf("weather_data_file_units %d\n", &input) != 1)
440     goto fmterr;
441     switch (input) { /* translate units */
442     case 1:
443     input = 1; /* radiometric quantities */
444     dir_is_horiz = 0; /* direct is perpendicular meas. */
445     break;
446     case 2:
447     input = 1; /* radiometric quantities */
448     dir_is_horiz = 1; /* solar measured horizontally */
449     break;
450     case 3:
451     input = 2; /* photometric quantities */
452     dir_is_horiz = 0; /* direct is perpendicular meas. */
453     break;
454     default:
455     goto fmterr;
456     }
457     rh_init(); /* initialize sky patches */
458     if (verbose) {
459     fprintf(stderr, "%s: location '%s'\n", progname, buf);
460     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
461     progname, s_latitude, s_longitude);
462     fprintf(stderr, "%s: %d sky patches per time step\n",
463     progname, nskypatch);
464 greg 2.8 if (rotation != 0)
465     fprintf(stderr, "%s: rotating output %.0f degrees\n",
466     progname, rotation);
467 greg 2.1 }
468 greg 2.2 /* convert quantities to radians */
469     s_latitude = DegToRad(s_latitude);
470     s_longitude = DegToRad(s_longitude);
471     s_meridian = DegToRad(s_meridian);
472 greg 2.27 /* initial allocation */
473 greg 2.28 mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch);
474 greg 2.1 /* process each time step in tape */
475     while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
476     double sda, sta;
477 greg 2.27
478 greg 2.28 mtx_offset = 3*nskypatch*nstored;
479     nstored += !avgSky | !nstored;
480 greg 2.27 /* make space for next row */
481 greg 2.28 if (nstored > tstorage) {
482     tstorage += (tstorage>>1) + nstored + 7;
483     mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
484 greg 2.15 }
485 greg 2.27 ntsteps++; /* keep count of time steps */
486 greg 2.1 if (dif <= 1e-4) {
487 greg 2.28 if (!avgSky | !mtx_offset)
488 greg 2.27 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
489 greg 2.1 continue;
490     }
491     /* compute solar position */
492     julian_date = jdate(mo, da);
493     sda = sdec(julian_date);
494     sta = stadj(julian_date);
495     altitude = salt(sda, hr+sta);
496 greg 2.8 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
497 greg 2.1 /* convert measured values */
498     if (dir_is_horiz && altitude > 0.)
499     dir /= sin(altitude);
500     if (input == 1) {
501     dir_irrad = dir;
502     diff_irrad = dif;
503     } else /* input == 2 */ {
504     dir_illum = dir;
505     diff_illum = dif;
506     }
507     /* compute sky patch values */
508     ComputeSky(mtx_data+mtx_offset);
509 greg 2.34 /* output sun if indicated */
510     if (sunsfp && (altitude > 0) & (dir_illum > 1e-4)) {
511     double srad = dir_illum/(WHTEFFICACY * fixed_sun_sa);
512     FVECT sv;
513     vector(sv, altitude, azimuth);
514     fprintf(sunsfp, "\nvoid light solar%d\n0\n0\n", ntsteps);
515     fprintf(sunsfp, "3 %.3e %.3e %.3e\n", srad*suncolor[0],
516     srad*suncolor[1], srad*suncolor[2]);
517     fprintf(sunsfp, "\nsolar%d source sun%d\n0\n0\n", ntsteps, ntsteps);
518     fprintf(sunsfp, "4 %.6f %.6f %.6f 0.533\n", sv[0], sv[1], sv[2]);
519     }
520     if (avgSky < 0) /* no matrix? */
521     continue;
522    
523 greg 2.4 AddDirect(mtx_data+mtx_offset);
524 greg 2.27 /* update cumulative sky? */
525     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
526     mtx_data[i] += mtx_data[mtx_offset+i];
527 greg 2.34 /* monthly reporting */
528     if (verbose && mo != last_monthly)
529     fprintf(stderr, "%s: stepping through month %d...\n",
530     progname, last_monthly=mo);
531     }
532     if (!ntsteps) {
533     fprintf(stderr, "%s: no valid time steps on input\n", progname);
534     exit(1);
535 greg 2.1 }
536     /* check for junk at end */
537     while ((i = fgetc(stdin)) != EOF)
538     if (!isspace(i)) {
539     fprintf(stderr, "%s: warning - unexpected data past EOT: ",
540     progname);
541     buf[0] = i; buf[1] = '\0';
542     fgets(buf+1, sizeof(buf)-1, stdin);
543     fputs(buf, stderr); fputc('\n', stderr);
544     break;
545     }
546 greg 2.34
547     if (avgSky < 0) /* no matrix output? */
548     goto alldone;
549    
550 greg 2.27 dif = 1./(double)ntsteps; /* average sky? */
551     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
552     mtx_data[i] *= dif;
553 greg 2.1 /* write out matrix */
554 greg 2.14 if (outfmt != 'a')
555     SET_FILE_BINARY(stdout);
556 greg 2.1 #ifdef getc_unlocked
557     flockfile(stdout);
558     #endif
559     if (verbose)
560     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
561 greg 2.28 progname, outfmt=='a' ? "" : "binary ", nstored);
562 greg 2.14 if (doheader) {
563     newheader("RADIANCE", stdout);
564     printargs(argc, argv, stdout);
565     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
566     -RadToDeg(s_longitude));
567     printf("NROWS=%d\n", nskypatch);
568 greg 2.28 printf("NCOLS=%d\n", nstored);
569 greg 2.14 printf("NCOMP=3\n");
570 greg 2.29 if ((outfmt == 'f') | (outfmt == 'd'))
571     fputendian(stdout);
572 greg 2.18 fputformat((char *)getfmtname(outfmt), stdout);
573 greg 2.14 putchar('\n');
574     }
575 greg 2.1 /* patches are rows (outer sort) */
576     for (i = 0; i < nskypatch; i++) {
577     mtx_offset = 3*i;
578     switch (outfmt) {
579     case 'a':
580 greg 2.28 for (j = 0; j < nstored; j++) {
581 greg 2.3 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
582 greg 2.1 mtx_data[mtx_offset+1],
583     mtx_data[mtx_offset+2]);
584     mtx_offset += 3*nskypatch;
585     }
586 greg 2.28 if (nstored > 1)
587 greg 2.2 fputc('\n', stdout);
588 greg 2.1 break;
589     case 'f':
590 greg 2.28 for (j = 0; j < nstored; j++) {
591 greg 2.23 putbinary(mtx_data+mtx_offset, sizeof(float), 3,
592 greg 2.1 stdout);
593     mtx_offset += 3*nskypatch;
594     }
595     break;
596     case 'd':
597 greg 2.28 for (j = 0; j < nstored; j++) {
598 greg 2.1 double ment[3];
599     ment[0] = mtx_data[mtx_offset];
600     ment[1] = mtx_data[mtx_offset+1];
601     ment[2] = mtx_data[mtx_offset+2];
602 greg 2.23 putbinary(ment, sizeof(double), 3, stdout);
603 greg 2.1 mtx_offset += 3*nskypatch;
604     }
605     break;
606     }
607     if (ferror(stdout))
608     goto writerr;
609     }
610 greg 2.34 alldone:
611     if (fflush(NULL) == EOF)
612 greg 2.1 goto writerr;
613     if (verbose)
614     fprintf(stderr, "%s: done.\n", progname);
615     exit(0);
616     userr:
617 greg 2.34 fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s|-n][-D file][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
618 greg 2.1 progname);
619     exit(1);
620     fmterr:
621 greg 2.34 fprintf(stderr, "%s: weather tape format error in header\n", progname);
622 greg 2.1 exit(1);
623     writerr:
624     fprintf(stderr, "%s: write error on output\n", progname);
625     exit(1);
626     }
627    
628     /* Return maximum of two doubles */
629     double dmax( double a, double b )
630     { return (a > b) ? a : b; }
631    
632     /* Compute sky patch radiance values (modified by GW) */
633     void
634     ComputeSky(float *parr)
635     {
636     int index; /* Category index */
637     double norm_diff_illum; /* Normalized diffuse illuimnance */
638     int i;
639    
640     /* Calculate atmospheric precipitable water content */
641     apwc = CalcPrecipWater(dew_point);
642    
643 greg 2.6 /* Calculate sun zenith angle (don't let it dip below horizon) */
644     /* Also limit minimum angle to keep circumsolar off zenith */
645     if (altitude <= 0.0)
646     sun_zenith = DegToRad(90.0);
647     else if (altitude >= DegToRad(87.0))
648     sun_zenith = DegToRad(3.0);
649     else
650     sun_zenith = DegToRad(90.0) - altitude;
651 greg 2.1
652     /* Compute the inputs for the calculation of the sky distribution */
653    
654     if (input == 0) /* XXX never used */
655     {
656     /* Calculate irradiance */
657     diff_irrad = CalcDiffuseIrradiance();
658     dir_irrad = CalcDirectIrradiance();
659    
660     /* Calculate illuminance */
661     index = GetCategoryIndex();
662     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
663     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
664     }
665     else if (input == 1)
666     {
667     sky_brightness = CalcSkyBrightness();
668     sky_clearness = CalcSkyClearness();
669    
670 greg 2.9 /* Limit sky clearness */
671     if (sky_clearness > 11.9)
672     sky_clearness = 11.9;
673    
674     /* Limit sky brightness */
675     if (sky_brightness < 0.01)
676 greg 2.11 sky_brightness = 0.01;
677 greg 2.9
678 greg 2.1 /* Calculate illuminance */
679     index = GetCategoryIndex();
680     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
681     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
682     }
683     else if (input == 2)
684     {
685     /* Calculate sky brightness and clearness from illuminance values */
686     index = CalcSkyParamFromIllum();
687     }
688    
689 greg 2.11 if (output == 1) { /* hack for solar radiance */
690     diff_illum = diff_irrad * WHTEFFICACY;
691     dir_illum = dir_irrad * WHTEFFICACY;
692     }
693 greg 2.1 /* Compute ground radiance (include solar contribution if any) */
694 greg 2.3 parr[0] = diff_illum;
695 greg 2.1 if (altitude > 0)
696 greg 2.3 parr[0] += dir_illum * sin(altitude);
697 greg 2.4 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
698     multcolor(parr, grefl);
699 greg 2.1
700 greg 2.32 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
701     memset(parr+3, 0, sizeof(float)*3*(nskypatch-1));
702     return;
703     }
704 greg 2.1 /* Calculate Perez sky model parameters */
705     CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
706    
707     /* Calculate sky patch luminance values */
708     CalcSkyPatchLumin(parr);
709    
710     /* Calculate relative horizontal illuminance */
711     norm_diff_illum = CalcRelHorzIllum(parr);
712    
713 greg 2.13 /* Check for zero sky -- make uniform in that case */
714     if (norm_diff_illum <= FTINY) {
715     for (i = 1; i < nskypatch; i++)
716     setcolor(parr+3*i, 1., 1., 1.);
717     norm_diff_illum = PI;
718     }
719 greg 2.1 /* Normalization coefficient */
720     norm_diff_illum = diff_illum / norm_diff_illum;
721    
722     /* Apply to sky patches to get absolute radiance values */
723     for (i = 1; i < nskypatch; i++) {
724 greg 2.7 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
725 greg 2.1 multcolor(parr+3*i, skycolor);
726     }
727     }
728    
729     /* Add in solar direct to nearest sky patches (GW) */
730     void
731     AddDirect(float *parr)
732     {
733     FVECT svec;
734 greg 2.3 double near_dprod[NSUNPATCH];
735     int near_patch[NSUNPATCH];
736     double wta[NSUNPATCH], wtot;
737 greg 2.1 int i, j, p;
738    
739 greg 2.4 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
740 greg 2.1 return;
741 greg 2.10 /* identify nsuns closest patches */
742     if (nsuns > NSUNPATCH)
743     nsuns = NSUNPATCH;
744     else if (nsuns <= 0)
745     nsuns = 1;
746     for (i = nsuns; i--; )
747 greg 2.1 near_dprod[i] = -1.;
748     vector(svec, altitude, azimuth);
749     for (p = 1; p < nskypatch; p++) {
750     FVECT pvec;
751     double dprod;
752     rh_vector(pvec, p);
753     dprod = DOT(pvec, svec);
754 greg 2.10 for (i = 0; i < nsuns; i++)
755 greg 2.1 if (dprod > near_dprod[i]) {
756 greg 2.10 for (j = nsuns; --j > i; ) {
757 greg 2.1 near_dprod[j] = near_dprod[j-1];
758     near_patch[j] = near_patch[j-1];
759     }
760     near_dprod[i] = dprod;
761     near_patch[i] = p;
762     break;
763     }
764     }
765     wtot = 0; /* weight by proximity */
766 greg 2.10 for (i = nsuns; i--; )
767 greg 2.1 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
768     /* add to nearest patch radiances */
769 greg 2.10 for (i = nsuns; i--; ) {
770 greg 2.2 float *pdest = parr + 3*near_patch[i];
771 greg 2.10 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
772    
773     val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
774     : rh_dom[near_patch[i]] ;
775 greg 2.4 *pdest++ += val_add*suncolor[0];
776     *pdest++ += val_add*suncolor[1];
777     *pdest++ += val_add*suncolor[2];
778 greg 2.2 }
779 greg 2.1 }
780    
781     /* Initialize Reinhart sky patch positions (GW) */
782     int
783     rh_init(void)
784     {
785     #define NROW 7
786     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
787     const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
788     int p, i, j;
789     /* allocate patch angle arrays */
790     nskypatch = 0;
791     for (p = 0; p < NROW; p++)
792     nskypatch += tnaz[p];
793     nskypatch *= rhsubdiv*rhsubdiv;
794     nskypatch += 2;
795     rh_palt = (float *)malloc(sizeof(float)*nskypatch);
796     rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
797     rh_dom = (float *)malloc(sizeof(float)*nskypatch);
798     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
799     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
800     exit(1);
801     }
802     rh_palt[0] = -PI/2.; /* ground & zenith patches */
803     rh_pazi[0] = 0.;
804     rh_dom[0] = 2.*PI;
805     rh_palt[nskypatch-1] = PI/2.;
806     rh_pazi[nskypatch-1] = 0.;
807     rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
808     p = 1; /* "normal" patches */
809     for (i = 0; i < NROW*rhsubdiv; i++) {
810     const float ralt = alpha*(i + .5);
811     const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
812 greg 2.3 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
813     (double)ninrow;
814 greg 2.1 for (j = 0; j < ninrow; j++) {
815     rh_palt[p] = ralt;
816     rh_pazi[p] = 2.*PI * j / (double)ninrow;
817     rh_dom[p++] = dom;
818     }
819     }
820     return nskypatch;
821     #undef NROW
822     }
823    
824     /* Resize daylight matrix (GW) */
825     float *
826     resize_dmatrix(float *mtx_data, int nsteps, int npatch)
827     {
828     if (mtx_data == NULL)
829     mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
830     else
831     mtx_data = (float *)realloc(mtx_data,
832     sizeof(float)*3*nsteps*npatch);
833     if (mtx_data == NULL) {
834     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
835     progname, nsteps, npatch);
836     exit(1);
837     }
838     return(mtx_data);
839     }
840    
841     /* Determine category index */
842     int GetCategoryIndex()
843     {
844     int index; /* Loop index */
845    
846     for (index = 0; index < 8; index++)
847     if ((sky_clearness >= SkyClearCat[index].lower) &&
848     (sky_clearness < SkyClearCat[index].upper))
849     break;
850    
851     return index;
852     }
853    
854     /* Calculate diffuse illuminance to diffuse irradiance ratio */
855    
856     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
857     /* Stewart. 1990. ìModeling Daylight Availability and */
858     /* Irradiance Components from Direct and Global */
859     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
860    
861     double CalcDiffuseIllumRatio( int index )
862     {
863     ModelCoeff const *pnle; /* Category coefficient pointer */
864    
865     /* Get category coefficient pointer */
866     pnle = &(DiffuseLumEff[index]);
867    
868     return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
869     pnle->d * log(sky_brightness);
870     }
871    
872     /* Calculate direct illuminance to direct irradiance ratio */
873    
874     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
875     /* Stewart. 1990. ìModeling Daylight Availability and */
876     /* Irradiance Components from Direct and Global */
877     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
878    
879     double CalcDirectIllumRatio( int index )
880     {
881     ModelCoeff const *pnle; /* Category coefficient pointer */
882    
883     /* Get category coefficient pointer */
884     pnle = &(DirectLumEff[index]);
885    
886     /* Calculate direct illuminance from direct irradiance */
887    
888     return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
889     sun_zenith - 5.0) + pnle->d * sky_brightness),
890     0.0);
891     }
892    
893     /* Calculate sky brightness */
894    
895     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
896     /* Stewart. 1990. ìModeling Daylight Availability and */
897     /* Irradiance Components from Direct and Global */
898     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
899    
900     double CalcSkyBrightness()
901     {
902     return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
903     CalcEccentricity());
904     }
905    
906     /* Calculate sky clearness */
907    
908     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
909     /* Stewart. 1990. ìModeling Daylight Availability and */
910     /* Irradiance Components from Direct and Global */
911     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
912    
913     double CalcSkyClearness()
914     {
915     double sz_cubed; /* Sun zenith angle cubed */
916    
917     /* Calculate sun zenith angle cubed */
918 greg 2.11 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
919 greg 2.1
920     return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
921     sz_cubed) / (1.0 + 1.041 * sz_cubed);
922     }
923    
924     /* Calculate diffuse horizontal irradiance from Perez sky brightness */
925    
926     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
927     /* Stewart. 1990. ìModeling Daylight Availability and */
928     /* Irradiance Components from Direct and Global */
929     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
930     /* (inverse). */
931    
932     double CalcDiffuseIrradiance()
933     {
934     return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
935     CalcAirMass();
936     }
937    
938     /* Calculate direct normal irradiance from Perez sky clearness */
939    
940     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
941     /* Stewart. 1990. ìModeling Daylight Availability and */
942     /* Irradiance Components from Direct and Global */
943     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
944     /* (inverse). */
945    
946     double CalcDirectIrradiance()
947     {
948     return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
949 greg 2.11 * sun_zenith*sun_zenith*sun_zenith));
950 greg 2.1 }
951    
952     /* Calculate sky brightness and clearness from illuminance values */
953     int CalcSkyParamFromIllum()
954     {
955     double test1 = 0.1;
956     double test2 = 0.1;
957     int counter = 0;
958     int index = 0; /* Category index */
959    
960     /* Convert illuminance to irradiance */
961     diff_irrad = diff_illum * DC_SolarConstantE /
962     (DC_SolarConstantL * 1000.0);
963     dir_irrad = dir_illum * DC_SolarConstantE /
964     (DC_SolarConstantL * 1000.0);
965    
966     /* Calculate sky brightness and clearness */
967     sky_brightness = CalcSkyBrightness();
968     sky_clearness = CalcSkyClearness();
969    
970     /* Limit sky clearness */
971     if (sky_clearness > 12.0)
972     sky_clearness = 12.0;
973    
974     /* Limit sky brightness */
975 greg 2.9 if (sky_brightness < 0.01)
976 greg 2.1 sky_brightness = 0.01;
977    
978     while (((fabs(diff_irrad - test1) > 10.0) ||
979     (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
980     {
981     test1 = diff_irrad;
982     test2 = dir_irrad;
983     counter++;
984    
985     /* Convert illuminance to irradiance */
986     index = GetCategoryIndex();
987     diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
988 greg 2.26 dir_irrad = CalcDirectIllumRatio(index);
989     if (dir_irrad > 0.1)
990     dir_irrad = dir_illum / dir_irrad;
991 greg 2.1
992     /* Calculate sky brightness and clearness */
993     sky_brightness = CalcSkyBrightness();
994     sky_clearness = CalcSkyClearness();
995    
996     /* Limit sky clearness */
997     if (sky_clearness > 12.0)
998     sky_clearness = 12.0;
999    
1000     /* Limit sky brightness */
1001 greg 2.9 if (sky_brightness < 0.01)
1002 greg 2.1 sky_brightness = 0.01;
1003     }
1004    
1005     return GetCategoryIndex();
1006     }
1007    
1008     /* Calculate relative luminance */
1009    
1010     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1011     /* ìAll-Weather Model for Sky Luminance Distribution - */
1012     /* Preliminary Configuration and Validation,î Solar Energy */
1013     /* 50(3):235-245, Eqn. 1. */
1014    
1015     double CalcRelLuminance( double gamma, double zeta )
1016     {
1017     return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
1018     (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
1019     perez_param[4] * cos(gamma) * cos(gamma));
1020     }
1021    
1022     /* Calculate Perez sky model parameters */
1023    
1024     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1025     /* ìAll-Weather Model for Sky Luminance Distribution - */
1026     /* Preliminary Configuration and Validation,î Solar Energy */
1027     /* 50(3):235-245, Eqns. 6 - 8. */
1028    
1029     void CalcPerezParam( double sz, double epsilon, double delta,
1030     int index )
1031     {
1032     double x[5][4]; /* Coefficents a, b, c, d, e */
1033     int i, j; /* Loop indices */
1034    
1035     /* Limit sky brightness */
1036     if (epsilon > 1.065 && epsilon < 2.8)
1037     {
1038     if (delta < 0.2)
1039     delta = 0.2;
1040     }
1041    
1042     /* Get Perez coefficients */
1043     for (i = 0; i < 5; i++)
1044     for (j = 0; j < 4; j++)
1045     x[i][j] = PerezCoeff[index][4 * i + j];
1046    
1047     if (index != 0)
1048     {
1049     /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1050     for (i = 0; i < 5; i++)
1051     perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1052     x[i][3] * sz);
1053     }
1054     else
1055     {
1056     /* Parameters a, b and e (Eqn. 6) */
1057     perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1058     x[0][3] * sz);
1059     perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1060     x[1][3] * sz);
1061     perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1062     x[4][3] * sz);
1063    
1064     /* Parameter c (Eqn. 7) */
1065     perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1066     x[2][2])) - x[2][3];
1067    
1068     /* Parameter d (Eqn. 8) */
1069     perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1070     x[3][2] + delta * x[3][3];
1071     }
1072     }
1073    
1074     /* Calculate relative horizontal illuminance (modified by GW) */
1075    
1076     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1077     /* ìAll-Weather Model for Sky Luminance Distribution - */
1078     /* Preliminary Configuration and Validation,î Solar Energy */
1079     /* 50(3):235-245, Eqn. 3. */
1080    
1081     double CalcRelHorzIllum( float *parr )
1082     {
1083     int i;
1084     double rh_illum = 0.0; /* Relative horizontal illuminance */
1085    
1086     for (i = 1; i < nskypatch; i++)
1087 greg 2.7 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1088 greg 2.1
1089 greg 2.7 return rh_illum;
1090 greg 2.1 }
1091    
1092     /* Calculate earth orbit eccentricity correction factor */
1093    
1094     /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1095     /* Techniques. Springer, p. 72. */
1096    
1097     double CalcEccentricity()
1098     {
1099     double day_angle; /* Day angle (radians) */
1100     double E0; /* Eccentricity */
1101    
1102     /* Calculate day angle */
1103     day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1104    
1105     /* Calculate eccentricity */
1106     E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1107     + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1108     day_angle);
1109    
1110     return E0;
1111     }
1112    
1113     /* Calculate atmospheric precipitable water content */
1114    
1115     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1116     /* Stewart. 1990. ìModeling Daylight Availability and */
1117     /* Irradiance Components from Direct and Global */
1118     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1119    
1120     /* Note: The default surface dew point temperature is 11 deg. C */
1121     /* (52 deg. F). Typical values are: */
1122    
1123     /* Celsius Fahrenheit Human Perception */
1124     /* > 24 > 75 Extremely uncomfortable */
1125     /* 21 - 24 70 - 74 Very humid */
1126     /* 18 - 21 65 - 69 Somewhat uncomfortable */
1127     /* 16 - 18 60 - 64 OK for most people */
1128     /* 13 - 16 55 - 59 Comfortable */
1129     /* 10 - 12 50 - 54 Very comfortable */
1130     /* < 10 < 49 A bit dry for some */
1131    
1132     double CalcPrecipWater( double dpt )
1133     { return exp(0.07 * dpt - 0.075); }
1134    
1135     /* Calculate relative air mass */
1136    
1137     /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1138     /* for the Relative Optical Air Mass," Arch. Meteorol. */
1139     /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1140    
1141     /* Note: More sophisticated relative air mass models are */
1142     /* available, but they differ significantly only for */
1143     /* sun zenith angles greater than 80 degrees. */
1144    
1145     double CalcAirMass()
1146     {
1147     return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1148     RadToDeg(sun_zenith), -1.253)));
1149     }
1150    
1151     /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1152    
1153     /* NOTE: The sky patches centers are determined in accordance with the */
1154     /* BRE-IDMP sky luminance measurement procedures. (See for example */
1155     /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1156     /* for the Validation of Illuminance Prediction Techniques," */
1157     /* Lighting Research & Technology 33(2):117-136.) */
1158    
1159     void CalcSkyPatchLumin( float *parr )
1160     {
1161     int i;
1162     double aas; /* Sun-sky point azimuthal angle */
1163     double sspa; /* Sun-sky point angle */
1164     double zsa; /* Zenithal sun angle */
1165    
1166     for (i = 1; i < nskypatch; i++)
1167     {
1168     /* Calculate sun-sky point azimuthal angle */
1169     aas = fabs(rh_pazi[i] - azimuth);
1170    
1171     /* Calculate zenithal sun angle */
1172     zsa = PI * 0.5 - rh_palt[i];
1173    
1174     /* Calculate sun-sky point angle (Equation 8-20) */
1175     sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1176     sin(zsa) * cos(aas));
1177    
1178     /* Calculate patch luminance */
1179     parr[3*i] = CalcRelLuminance(sspa, zsa);
1180     if (parr[3*i] < 0) parr[3*i] = 0;
1181     parr[3*i+2] = parr[3*i+1] = parr[3*i];
1182     }
1183     }