ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.33
Committed: Mon Jan 6 21:22:46 2020 UTC (4 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.32: +2 -14 lines
Log Message:
Made sure -d option works as before

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.33 static const char RCSid[] = "$Id: gendaymtx.c,v 2.32 2020/01/06 21:02:57 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * gendaymtx.c
6     *
7     * Generate a daylight matrix based on Perez Sky Model.
8     *
9     * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10     * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11     *
12     * Created by Greg Ward on 1/16/13.
13     */
14    
15     /*********************************************************************
16     *
17     * H32_gendaylit.CPP - Perez Sky Model Calculation
18     *
19     * Version: 1.00A
20     *
21     * History: 09/10/01 - Created.
22     * 11/10/08 - Modified for Unix compilation.
23     * 11/10/12 - Fixed conditional __max directive.
24     * 1/11/13 - Tweaks and optimizations (G.Ward)
25     *
26     * Compilers: Microsoft Visual C/C++ Professional V10.0
27     *
28     * Author: Ian Ashdown, P.Eng.
29     * byHeart Consultants Limited
30     * 620 Ballantree Road
31     * West Vancouver, B.C.
32     * Canada V7S 1W3
33     * e-mail: [email protected]
34     *
35     * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36     * Stewart. 1990. ìModeling Daylight Availability and
37     * Irradiance Components from Direct and Global
38     * Irradiance,î Solar Energy 44(5):271-289.
39     *
40     * Perez, R., R. Seals, and J. Michalsky. 1993.
41     * ìAll-Weather Model for Sky Luminance Distribution -
42     * Preliminary Configuration and Validation,î Solar Energy
43     * 50(3):235-245.
44     *
45     * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46     * All-Weather Model for Sky Luminance Distribution -
47     * Preliminary Configuration and Validation,î Solar Energy
48     * 51(5):423.
49     *
50     * NOTE: This program is a completely rewritten version of
51     * gendaylit.c written by Jean-Jacques Delaunay (1994).
52     *
53     * Copyright 2009-2012 byHeart Consultants Limited. All rights
54     * reserved.
55     *
56     * Redistribution and use in source and binary forms, with or without
57     * modification, are permitted for personal and commercial purposes
58     * provided that redistribution of source code must retain the above
59     * copyright notice, this list of conditions and the following
60     * disclaimer:
61     *
62     * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65     * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66     * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70     * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73     * POSSIBILITY OF SUCH DAMAGE.
74     *
75     *********************************************************************/
76    
77     /* Zenith is along the Z-axis */
78     /* X-axis points east */
79     /* Y-axis points north */
80     /* azimuth is measured as degrees or radians east of North */
81    
82     /* Include files */
83     #define _USE_MATH_DEFINES
84     #include <stdlib.h>
85     #include <ctype.h>
86 greg 2.30 #include "platform.h"
87 greg 2.1 #include "rtmath.h"
88 greg 2.23 #include "rtio.h"
89 greg 2.1 #include "color.h"
90 greg 2.30 #include "sun.h"
91 greg 2.1
92     char *progname; /* Program name */
93     char errmsg[128]; /* Error message buffer */
94     const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
95     const double DC_SolarConstantL = 127.5; /* Solar constant klux */
96    
97     double altitude; /* Solar altitude (radians) */
98     double azimuth; /* Solar azimuth (radians) */
99     double apwc; /* Atmospheric precipitable water content */
100     double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
101     double diff_illum; /* Diffuse illuminance */
102     double diff_irrad; /* Diffuse irradiance */
103     double dir_illum; /* Direct illuminance */
104     double dir_irrad; /* Direct irradiance */
105     int julian_date; /* Julian date */
106     double perez_param[5]; /* Perez sky model parameters */
107     double sky_brightness; /* Sky brightness */
108     double sky_clearness; /* Sky clearness */
109     double solar_rad; /* Solar radiance */
110     double sun_zenith; /* Sun zenith angle (radians) */
111     int input = 0; /* Input type */
112 greg 2.11 int output = 0; /* Output type */
113 greg 2.1
114     extern double dmax( double, double );
115     extern double CalcAirMass();
116     extern double CalcDiffuseIllumRatio( int );
117     extern double CalcDiffuseIrradiance();
118     extern double CalcDirectIllumRatio( int );
119     extern double CalcDirectIrradiance();
120     extern double CalcEccentricity();
121     extern double CalcPrecipWater( double );
122     extern double CalcRelHorzIllum( float *parr );
123     extern double CalcRelLuminance( double, double );
124     extern double CalcSkyBrightness();
125     extern double CalcSkyClearness();
126     extern int CalcSkyParamFromIllum();
127     extern int GetCategoryIndex();
128     extern void CalcPerezParam( double, double, double, int );
129     extern void CalcSkyPatchLumin( float *parr );
130     extern void ComputeSky( float *parr );
131    
132     /* Degrees into radians */
133     #define DegToRad(deg) ((deg)*(PI/180.))
134    
135     /* Radiuans into degrees */
136     #define RadToDeg(rad) ((rad)*(180./PI))
137    
138    
139     /* Perez sky model coefficients */
140    
141     /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
142     /* Weather Model for Sky Luminance Distribution - */
143     /* Preliminary Configuration and Validation," Solar */
144     /* Energy 50(3):235-245, Table 1. */
145    
146     static const double PerezCoeff[8][20] =
147     {
148     /* Sky clearness (epsilon): 1.000 to 1.065 */
149     { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
150     0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
151     1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
152     0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
153     /* Sky clearness (epsilon): 1.065 to 1.230 */
154     { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
155     0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
156     6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
157     0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
158     /* Sky clearness (epsilon): 1.230 to 1.500 */
159     { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
160     -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
161     -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
162     -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
163     /* Sky clearness (epsilon): 1.500 to 1.950 */
164     { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
165     -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
166     -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
167     0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
168     /* Sky clearness (epsilon): 1.950 to 2.800 */
169     { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
170     0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
171     -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
172     0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
173     /* Sky clearness (epsilon): 2.800 to 4.500 */
174     { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
175     -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
176     -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
177     1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
178     /* Sky clearness (epsilon): 4.500 to 6.200 */
179     { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
180     0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
181     1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
182     0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
183     /* Sky clearness (epsilon): 6.200 to ... */
184     { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
185     0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
186     -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
187     0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
188     };
189    
190     /* Perez irradiance component model coefficients */
191    
192     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
193     /* Stewart. 1990. ìModeling Daylight Availability and */
194     /* Irradiance Components from Direct and Global */
195     /* Irradiance,î Solar Energy 44(5):271-289. */
196    
197     typedef struct
198     {
199     double lower; /* Lower bound */
200     double upper; /* Upper bound */
201     } CategoryBounds;
202    
203     /* Perez sky clearness (epsilon) categories (Table 1) */
204     static const CategoryBounds SkyClearCat[8] =
205     {
206     { 1.000, 1.065 }, /* Overcast */
207     { 1.065, 1.230 },
208     { 1.230, 1.500 },
209     { 1.500, 1.950 },
210     { 1.950, 2.800 },
211     { 2.800, 4.500 },
212     { 4.500, 6.200 },
213 greg 2.12 { 6.200, 12.01 } /* Clear */
214 greg 2.1 };
215    
216     /* Luminous efficacy model coefficients */
217     typedef struct
218     {
219     double a;
220     double b;
221     double c;
222     double d;
223     } ModelCoeff;
224    
225     /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
226     static const ModelCoeff DiffuseLumEff[8] =
227     {
228     { 97.24, -0.46, 12.00, -8.91 },
229     { 107.22, 1.15, 0.59, -3.95 },
230     { 104.97, 2.96, -5.53, -8.77 },
231     { 102.39, 5.59, -13.95, -13.90 },
232     { 100.71, 5.94, -22.75, -23.74 },
233     { 106.42, 3.83, -36.15, -28.83 },
234     { 141.88, 1.90, -53.24, -14.03 },
235     { 152.23, 0.35, -45.27, -7.98 }
236     };
237    
238     /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
239     static const ModelCoeff DirectLumEff[8] =
240     {
241     { 57.20, -4.55, -2.98, 117.12 },
242     { 98.99, -3.46, -1.21, 12.38 },
243     { 109.83, -4.90, -1.71, -8.81 },
244     { 110.34, -5.84, -1.99, -4.56 },
245     { 106.36, -3.97, -1.75, -6.16 },
246     { 107.19, -1.25, -1.51, -26.73 },
247     { 105.75, 0.77, -1.26, -34.44 },
248     { 101.18, 1.58, -1.10, -8.29 }
249     };
250    
251 greg 2.3 #ifndef NSUNPATCH
252 greg 2.10 #define NSUNPATCH 4 /* max. # patches to spread sun into */
253 greg 2.3 #endif
254    
255 greg 2.10 int nsuns = NSUNPATCH; /* number of sun patches to use */
256     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
257    
258 greg 2.1 int verbose = 0; /* progress reports to stderr? */
259    
260     int outfmt = 'a'; /* output format */
261    
262     int rhsubdiv = 1; /* Reinhart sky subdivisions */
263    
264 greg 2.4 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
265     COLOR suncolor = {1., 1., 1.}; /* sun color */
266     COLOR grefl = {.2, .2, .2}; /* ground reflectance */
267 greg 2.1
268     int nskypatch; /* number of Reinhart patches */
269     float *rh_palt; /* sky patch altitudes (radians) */
270     float *rh_pazi; /* sky patch azimuths (radians) */
271     float *rh_dom; /* sky patch solid angle (sr) */
272    
273     #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
274     (v)[0] = (v)[1]*tsin(azi), \
275     (v)[1] *= tcos(azi), \
276     (v)[2] = tsin(alt) )
277    
278     #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
279    
280     #define rh_cos(i) tsin(rh_palt[i])
281    
282     extern int rh_init(void);
283     extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
284     extern void AddDirect(float *parr);
285    
286 greg 2.14
287     static const char *
288     getfmtname(int fmt)
289     {
290     switch (fmt) {
291     case 'a':
292     return("ascii");
293     case 'f':
294     return("float");
295     case 'd':
296     return("double");
297     }
298     return("unknown");
299     }
300    
301    
302 greg 2.1 int
303     main(int argc, char *argv[])
304     {
305     char buf[256];
306 greg 2.14 int doheader = 1; /* output header? */
307 greg 2.8 double rotation = 0; /* site rotation (degrees) */
308 greg 2.1 double elevation; /* site elevation (meters) */
309     int dir_is_horiz; /* direct is meas. on horizontal? */
310     float *mtx_data = NULL; /* our matrix data */
311 greg 2.28 int avgSky = 0; /* compute average sky r.t. matrix? */
312 greg 2.27 int ntsteps = 0; /* number of time steps */
313 greg 2.28 int tstorage = 0; /* number of allocated time steps */
314     int nstored = 0; /* number of time steps in matrix */
315 greg 2.1 int last_monthly = 0; /* month of last report */
316     int mo, da; /* month (1-12) and day (1-31) */
317     double hr; /* hour (local standard time) */
318     double dir, dif; /* direct and diffuse values */
319     int mtx_offset;
320     int i, j;
321    
322     progname = argv[0];
323     /* get options */
324     for (i = 1; i < argc && argv[i][0] == '-'; i++)
325     switch (argv[i][1]) {
326 greg 2.4 case 'g': /* ground reflectance */
327     grefl[0] = atof(argv[++i]);
328     grefl[1] = atof(argv[++i]);
329     grefl[2] = atof(argv[++i]);
330 greg 2.1 break;
331 greg 2.4 case 'v': /* verbose progress reports */
332 greg 2.1 verbose++;
333     break;
334 greg 2.14 case 'h': /* turn off header */
335     doheader = 0;
336     break;
337 greg 2.4 case 'o': /* output format */
338 greg 2.1 switch (argv[i][2]) {
339     case 'f':
340     case 'd':
341     case 'a':
342     outfmt = argv[i][2];
343     break;
344     default:
345     goto userr;
346     }
347     break;
348 greg 2.11 case 'O': /* output type */
349     switch (argv[i][2]) {
350     case '0':
351     output = 0;
352     break;
353     case '1':
354     output = 1;
355     break;
356     default:
357     goto userr;
358     }
359     if (argv[i][3])
360     goto userr;
361     break;
362 greg 2.4 case 'm': /* Reinhart subdivisions */
363 greg 2.1 rhsubdiv = atoi(argv[++i]);
364     break;
365 greg 2.4 case 'c': /* sky color */
366 greg 2.1 skycolor[0] = atof(argv[++i]);
367     skycolor[1] = atof(argv[++i]);
368     skycolor[2] = atof(argv[++i]);
369     break;
370 greg 2.4 case 'd': /* solar (direct) only */
371 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 0;
372 greg 2.33 grefl[0] = grefl[1] = grefl[2] = 0;
373 greg 2.1 break;
374 greg 2.4 case 's': /* sky only (no direct) */
375     suncolor[0] = suncolor[1] = suncolor[2] = 0;
376 greg 2.1 break;
377 greg 2.8 case 'r': /* rotate distribution */
378     if (argv[i][2] && argv[i][2] != 'z')
379     goto userr;
380     rotation = atof(argv[++i]);
381     break;
382 greg 2.10 case '5': /* 5-phase calculation */
383     nsuns = 1;
384 greg 2.19 fixed_sun_sa = PI/360.*atof(argv[++i]);
385 greg 2.21 if (fixed_sun_sa <= 0) {
386     fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
387     argv[0]);
388     exit(1);
389     }
390 greg 2.19 fixed_sun_sa *= fixed_sun_sa*PI;
391 greg 2.10 break;
392 greg 2.27 case 'A': /* compute average sky */
393     avgSky = 1;
394     break;
395 greg 2.1 default:
396     goto userr;
397     }
398     if (i < argc-1)
399     goto userr;
400     if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
401     fprintf(stderr, "%s: cannot open '%s' for input\n",
402     progname, argv[i]);
403     exit(1);
404     }
405     if (verbose) {
406     if (i == argc-1)
407     fprintf(stderr, "%s: reading weather tape '%s'\n",
408     progname, argv[i]);
409     else
410     fprintf(stderr, "%s: reading weather tape from <stdin>\n",
411     progname);
412     }
413     /* read weather tape header */
414 greg 2.2 if (scanf("place %[^\r\n] ", buf) != 1)
415 greg 2.1 goto fmterr;
416     if (scanf("latitude %lf\n", &s_latitude) != 1)
417     goto fmterr;
418     if (scanf("longitude %lf\n", &s_longitude) != 1)
419     goto fmterr;
420     if (scanf("time_zone %lf\n", &s_meridian) != 1)
421     goto fmterr;
422     if (scanf("site_elevation %lf\n", &elevation) != 1)
423     goto fmterr;
424     if (scanf("weather_data_file_units %d\n", &input) != 1)
425     goto fmterr;
426     switch (input) { /* translate units */
427     case 1:
428     input = 1; /* radiometric quantities */
429     dir_is_horiz = 0; /* direct is perpendicular meas. */
430     break;
431     case 2:
432     input = 1; /* radiometric quantities */
433     dir_is_horiz = 1; /* solar measured horizontally */
434     break;
435     case 3:
436     input = 2; /* photometric quantities */
437     dir_is_horiz = 0; /* direct is perpendicular meas. */
438     break;
439     default:
440     goto fmterr;
441     }
442     rh_init(); /* initialize sky patches */
443     if (verbose) {
444     fprintf(stderr, "%s: location '%s'\n", progname, buf);
445     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
446     progname, s_latitude, s_longitude);
447     fprintf(stderr, "%s: %d sky patches per time step\n",
448     progname, nskypatch);
449 greg 2.8 if (rotation != 0)
450     fprintf(stderr, "%s: rotating output %.0f degrees\n",
451     progname, rotation);
452 greg 2.1 }
453 greg 2.2 /* convert quantities to radians */
454     s_latitude = DegToRad(s_latitude);
455     s_longitude = DegToRad(s_longitude);
456     s_meridian = DegToRad(s_meridian);
457 greg 2.27 /* initial allocation */
458 greg 2.28 mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch);
459 greg 2.1 /* process each time step in tape */
460     while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
461     double sda, sta;
462 greg 2.27
463 greg 2.28 mtx_offset = 3*nskypatch*nstored;
464     nstored += !avgSky | !nstored;
465 greg 2.27 /* make space for next row */
466 greg 2.28 if (nstored > tstorage) {
467     tstorage += (tstorage>>1) + nstored + 7;
468     mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
469 greg 2.15 }
470 greg 2.27 ntsteps++; /* keep count of time steps */
471 greg 2.1 if (dif <= 1e-4) {
472 greg 2.28 if (!avgSky | !mtx_offset)
473 greg 2.27 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
474 greg 2.1 continue;
475     }
476     if (verbose && mo != last_monthly)
477     fprintf(stderr, "%s: stepping through month %d...\n",
478     progname, last_monthly=mo);
479     /* compute solar position */
480     julian_date = jdate(mo, da);
481     sda = sdec(julian_date);
482     sta = stadj(julian_date);
483     altitude = salt(sda, hr+sta);
484 greg 2.8 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
485 greg 2.1 /* convert measured values */
486     if (dir_is_horiz && altitude > 0.)
487     dir /= sin(altitude);
488     if (input == 1) {
489     dir_irrad = dir;
490     diff_irrad = dif;
491     } else /* input == 2 */ {
492     dir_illum = dir;
493     diff_illum = dif;
494     }
495     /* compute sky patch values */
496     ComputeSky(mtx_data+mtx_offset);
497 greg 2.4 AddDirect(mtx_data+mtx_offset);
498 greg 2.27 /* update cumulative sky? */
499     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
500     mtx_data[i] += mtx_data[mtx_offset+i];
501 greg 2.1 }
502     /* check for junk at end */
503     while ((i = fgetc(stdin)) != EOF)
504     if (!isspace(i)) {
505     fprintf(stderr, "%s: warning - unexpected data past EOT: ",
506     progname);
507     buf[0] = i; buf[1] = '\0';
508     fgets(buf+1, sizeof(buf)-1, stdin);
509     fputs(buf, stderr); fputc('\n', stderr);
510     break;
511     }
512 greg 2.27 if (!ntsteps) {
513     fprintf(stderr, "%s: no valid time steps on input\n", progname);
514     exit(1);
515     }
516     dif = 1./(double)ntsteps; /* average sky? */
517     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
518     mtx_data[i] *= dif;
519 greg 2.1 /* write out matrix */
520 greg 2.14 if (outfmt != 'a')
521     SET_FILE_BINARY(stdout);
522 greg 2.1 #ifdef getc_unlocked
523     flockfile(stdout);
524     #endif
525     if (verbose)
526     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
527 greg 2.28 progname, outfmt=='a' ? "" : "binary ", nstored);
528 greg 2.14 if (doheader) {
529     newheader("RADIANCE", stdout);
530     printargs(argc, argv, stdout);
531     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
532     -RadToDeg(s_longitude));
533     printf("NROWS=%d\n", nskypatch);
534 greg 2.28 printf("NCOLS=%d\n", nstored);
535 greg 2.14 printf("NCOMP=3\n");
536 greg 2.29 if ((outfmt == 'f') | (outfmt == 'd'))
537     fputendian(stdout);
538 greg 2.18 fputformat((char *)getfmtname(outfmt), stdout);
539 greg 2.14 putchar('\n');
540     }
541 greg 2.1 /* patches are rows (outer sort) */
542     for (i = 0; i < nskypatch; i++) {
543     mtx_offset = 3*i;
544     switch (outfmt) {
545     case 'a':
546 greg 2.28 for (j = 0; j < nstored; j++) {
547 greg 2.3 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
548 greg 2.1 mtx_data[mtx_offset+1],
549     mtx_data[mtx_offset+2]);
550     mtx_offset += 3*nskypatch;
551     }
552 greg 2.28 if (nstored > 1)
553 greg 2.2 fputc('\n', stdout);
554 greg 2.1 break;
555     case 'f':
556 greg 2.28 for (j = 0; j < nstored; j++) {
557 greg 2.23 putbinary(mtx_data+mtx_offset, sizeof(float), 3,
558 greg 2.1 stdout);
559     mtx_offset += 3*nskypatch;
560     }
561     break;
562     case 'd':
563 greg 2.28 for (j = 0; j < nstored; j++) {
564 greg 2.1 double ment[3];
565     ment[0] = mtx_data[mtx_offset];
566     ment[1] = mtx_data[mtx_offset+1];
567     ment[2] = mtx_data[mtx_offset+2];
568 greg 2.23 putbinary(ment, sizeof(double), 3, stdout);
569 greg 2.1 mtx_offset += 3*nskypatch;
570     }
571     break;
572     }
573     if (ferror(stdout))
574     goto writerr;
575     }
576     if (fflush(stdout) == EOF)
577     goto writerr;
578     if (verbose)
579     fprintf(stderr, "%s: done.\n", progname);
580     exit(0);
581     userr:
582 greg 2.27 fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
583 greg 2.1 progname);
584     exit(1);
585     fmterr:
586     fprintf(stderr, "%s: input weather tape format error\n", progname);
587     exit(1);
588     writerr:
589     fprintf(stderr, "%s: write error on output\n", progname);
590     exit(1);
591     }
592    
593     /* Return maximum of two doubles */
594     double dmax( double a, double b )
595     { return (a > b) ? a : b; }
596    
597     /* Compute sky patch radiance values (modified by GW) */
598     void
599     ComputeSky(float *parr)
600     {
601     int index; /* Category index */
602     double norm_diff_illum; /* Normalized diffuse illuimnance */
603     int i;
604    
605     /* Calculate atmospheric precipitable water content */
606     apwc = CalcPrecipWater(dew_point);
607    
608 greg 2.6 /* Calculate sun zenith angle (don't let it dip below horizon) */
609     /* Also limit minimum angle to keep circumsolar off zenith */
610     if (altitude <= 0.0)
611     sun_zenith = DegToRad(90.0);
612     else if (altitude >= DegToRad(87.0))
613     sun_zenith = DegToRad(3.0);
614     else
615     sun_zenith = DegToRad(90.0) - altitude;
616 greg 2.1
617     /* Compute the inputs for the calculation of the sky distribution */
618    
619     if (input == 0) /* XXX never used */
620     {
621     /* Calculate irradiance */
622     diff_irrad = CalcDiffuseIrradiance();
623     dir_irrad = CalcDirectIrradiance();
624    
625     /* Calculate illuminance */
626     index = GetCategoryIndex();
627     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
628     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
629     }
630     else if (input == 1)
631     {
632     sky_brightness = CalcSkyBrightness();
633     sky_clearness = CalcSkyClearness();
634    
635 greg 2.9 /* Limit sky clearness */
636     if (sky_clearness > 11.9)
637     sky_clearness = 11.9;
638    
639     /* Limit sky brightness */
640     if (sky_brightness < 0.01)
641 greg 2.11 sky_brightness = 0.01;
642 greg 2.9
643 greg 2.1 /* Calculate illuminance */
644     index = GetCategoryIndex();
645     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
646     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
647     }
648     else if (input == 2)
649     {
650     /* Calculate sky brightness and clearness from illuminance values */
651     index = CalcSkyParamFromIllum();
652     }
653    
654 greg 2.11 if (output == 1) { /* hack for solar radiance */
655     diff_illum = diff_irrad * WHTEFFICACY;
656     dir_illum = dir_irrad * WHTEFFICACY;
657     }
658 greg 2.1 /* Compute ground radiance (include solar contribution if any) */
659 greg 2.3 parr[0] = diff_illum;
660 greg 2.1 if (altitude > 0)
661 greg 2.3 parr[0] += dir_illum * sin(altitude);
662 greg 2.4 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
663     multcolor(parr, grefl);
664 greg 2.1
665 greg 2.32 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
666     memset(parr+3, 0, sizeof(float)*3*(nskypatch-1));
667     return;
668     }
669 greg 2.1 /* Calculate Perez sky model parameters */
670     CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
671    
672     /* Calculate sky patch luminance values */
673     CalcSkyPatchLumin(parr);
674    
675     /* Calculate relative horizontal illuminance */
676     norm_diff_illum = CalcRelHorzIllum(parr);
677    
678 greg 2.13 /* Check for zero sky -- make uniform in that case */
679     if (norm_diff_illum <= FTINY) {
680     for (i = 1; i < nskypatch; i++)
681     setcolor(parr+3*i, 1., 1., 1.);
682     norm_diff_illum = PI;
683     }
684 greg 2.1 /* Normalization coefficient */
685     norm_diff_illum = diff_illum / norm_diff_illum;
686    
687     /* Apply to sky patches to get absolute radiance values */
688     for (i = 1; i < nskypatch; i++) {
689 greg 2.7 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
690 greg 2.1 multcolor(parr+3*i, skycolor);
691     }
692     }
693    
694     /* Add in solar direct to nearest sky patches (GW) */
695     void
696     AddDirect(float *parr)
697     {
698     FVECT svec;
699 greg 2.3 double near_dprod[NSUNPATCH];
700     int near_patch[NSUNPATCH];
701     double wta[NSUNPATCH], wtot;
702 greg 2.1 int i, j, p;
703    
704 greg 2.4 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
705 greg 2.1 return;
706 greg 2.10 /* identify nsuns closest patches */
707     if (nsuns > NSUNPATCH)
708     nsuns = NSUNPATCH;
709     else if (nsuns <= 0)
710     nsuns = 1;
711     for (i = nsuns; i--; )
712 greg 2.1 near_dprod[i] = -1.;
713     vector(svec, altitude, azimuth);
714     for (p = 1; p < nskypatch; p++) {
715     FVECT pvec;
716     double dprod;
717     rh_vector(pvec, p);
718     dprod = DOT(pvec, svec);
719 greg 2.10 for (i = 0; i < nsuns; i++)
720 greg 2.1 if (dprod > near_dprod[i]) {
721 greg 2.10 for (j = nsuns; --j > i; ) {
722 greg 2.1 near_dprod[j] = near_dprod[j-1];
723     near_patch[j] = near_patch[j-1];
724     }
725     near_dprod[i] = dprod;
726     near_patch[i] = p;
727     break;
728     }
729     }
730     wtot = 0; /* weight by proximity */
731 greg 2.10 for (i = nsuns; i--; )
732 greg 2.1 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
733     /* add to nearest patch radiances */
734 greg 2.10 for (i = nsuns; i--; ) {
735 greg 2.2 float *pdest = parr + 3*near_patch[i];
736 greg 2.10 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
737    
738     val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
739     : rh_dom[near_patch[i]] ;
740 greg 2.4 *pdest++ += val_add*suncolor[0];
741     *pdest++ += val_add*suncolor[1];
742     *pdest++ += val_add*suncolor[2];
743 greg 2.2 }
744 greg 2.1 }
745    
746     /* Initialize Reinhart sky patch positions (GW) */
747     int
748     rh_init(void)
749     {
750     #define NROW 7
751     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
752     const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
753     int p, i, j;
754     /* allocate patch angle arrays */
755     nskypatch = 0;
756     for (p = 0; p < NROW; p++)
757     nskypatch += tnaz[p];
758     nskypatch *= rhsubdiv*rhsubdiv;
759     nskypatch += 2;
760     rh_palt = (float *)malloc(sizeof(float)*nskypatch);
761     rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
762     rh_dom = (float *)malloc(sizeof(float)*nskypatch);
763     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
764     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
765     exit(1);
766     }
767     rh_palt[0] = -PI/2.; /* ground & zenith patches */
768     rh_pazi[0] = 0.;
769     rh_dom[0] = 2.*PI;
770     rh_palt[nskypatch-1] = PI/2.;
771     rh_pazi[nskypatch-1] = 0.;
772     rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
773     p = 1; /* "normal" patches */
774     for (i = 0; i < NROW*rhsubdiv; i++) {
775     const float ralt = alpha*(i + .5);
776     const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
777 greg 2.3 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
778     (double)ninrow;
779 greg 2.1 for (j = 0; j < ninrow; j++) {
780     rh_palt[p] = ralt;
781     rh_pazi[p] = 2.*PI * j / (double)ninrow;
782     rh_dom[p++] = dom;
783     }
784     }
785     return nskypatch;
786     #undef NROW
787     }
788    
789     /* Resize daylight matrix (GW) */
790     float *
791     resize_dmatrix(float *mtx_data, int nsteps, int npatch)
792     {
793     if (mtx_data == NULL)
794     mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
795     else
796     mtx_data = (float *)realloc(mtx_data,
797     sizeof(float)*3*nsteps*npatch);
798     if (mtx_data == NULL) {
799     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
800     progname, nsteps, npatch);
801     exit(1);
802     }
803     return(mtx_data);
804     }
805    
806     /* Determine category index */
807     int GetCategoryIndex()
808     {
809     int index; /* Loop index */
810    
811     for (index = 0; index < 8; index++)
812     if ((sky_clearness >= SkyClearCat[index].lower) &&
813     (sky_clearness < SkyClearCat[index].upper))
814     break;
815    
816     return index;
817     }
818    
819     /* Calculate diffuse illuminance to diffuse irradiance ratio */
820    
821     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
822     /* Stewart. 1990. ìModeling Daylight Availability and */
823     /* Irradiance Components from Direct and Global */
824     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
825    
826     double CalcDiffuseIllumRatio( int index )
827     {
828     ModelCoeff const *pnle; /* Category coefficient pointer */
829    
830     /* Get category coefficient pointer */
831     pnle = &(DiffuseLumEff[index]);
832    
833     return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
834     pnle->d * log(sky_brightness);
835     }
836    
837     /* Calculate direct illuminance to direct irradiance ratio */
838    
839     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
840     /* Stewart. 1990. ìModeling Daylight Availability and */
841     /* Irradiance Components from Direct and Global */
842     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
843    
844     double CalcDirectIllumRatio( int index )
845     {
846     ModelCoeff const *pnle; /* Category coefficient pointer */
847    
848     /* Get category coefficient pointer */
849     pnle = &(DirectLumEff[index]);
850    
851     /* Calculate direct illuminance from direct irradiance */
852    
853     return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
854     sun_zenith - 5.0) + pnle->d * sky_brightness),
855     0.0);
856     }
857    
858     /* Calculate sky brightness */
859    
860     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
861     /* Stewart. 1990. ìModeling Daylight Availability and */
862     /* Irradiance Components from Direct and Global */
863     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
864    
865     double CalcSkyBrightness()
866     {
867     return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
868     CalcEccentricity());
869     }
870    
871     /* Calculate sky clearness */
872    
873     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
874     /* Stewart. 1990. ìModeling Daylight Availability and */
875     /* Irradiance Components from Direct and Global */
876     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
877    
878     double CalcSkyClearness()
879     {
880     double sz_cubed; /* Sun zenith angle cubed */
881    
882     /* Calculate sun zenith angle cubed */
883 greg 2.11 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
884 greg 2.1
885     return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
886     sz_cubed) / (1.0 + 1.041 * sz_cubed);
887     }
888    
889     /* Calculate diffuse horizontal irradiance from Perez sky brightness */
890    
891     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
892     /* Stewart. 1990. ìModeling Daylight Availability and */
893     /* Irradiance Components from Direct and Global */
894     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
895     /* (inverse). */
896    
897     double CalcDiffuseIrradiance()
898     {
899     return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
900     CalcAirMass();
901     }
902    
903     /* Calculate direct normal irradiance from Perez sky clearness */
904    
905     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
906     /* Stewart. 1990. ìModeling Daylight Availability and */
907     /* Irradiance Components from Direct and Global */
908     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
909     /* (inverse). */
910    
911     double CalcDirectIrradiance()
912     {
913     return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
914 greg 2.11 * sun_zenith*sun_zenith*sun_zenith));
915 greg 2.1 }
916    
917     /* Calculate sky brightness and clearness from illuminance values */
918     int CalcSkyParamFromIllum()
919     {
920     double test1 = 0.1;
921     double test2 = 0.1;
922     int counter = 0;
923     int index = 0; /* Category index */
924    
925     /* Convert illuminance to irradiance */
926     diff_irrad = diff_illum * DC_SolarConstantE /
927     (DC_SolarConstantL * 1000.0);
928     dir_irrad = dir_illum * DC_SolarConstantE /
929     (DC_SolarConstantL * 1000.0);
930    
931     /* Calculate sky brightness and clearness */
932     sky_brightness = CalcSkyBrightness();
933     sky_clearness = CalcSkyClearness();
934    
935     /* Limit sky clearness */
936     if (sky_clearness > 12.0)
937     sky_clearness = 12.0;
938    
939     /* Limit sky brightness */
940 greg 2.9 if (sky_brightness < 0.01)
941 greg 2.1 sky_brightness = 0.01;
942    
943     while (((fabs(diff_irrad - test1) > 10.0) ||
944     (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
945     {
946     test1 = diff_irrad;
947     test2 = dir_irrad;
948     counter++;
949    
950     /* Convert illuminance to irradiance */
951     index = GetCategoryIndex();
952     diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
953 greg 2.26 dir_irrad = CalcDirectIllumRatio(index);
954     if (dir_irrad > 0.1)
955     dir_irrad = dir_illum / dir_irrad;
956 greg 2.1
957     /* Calculate sky brightness and clearness */
958     sky_brightness = CalcSkyBrightness();
959     sky_clearness = CalcSkyClearness();
960    
961     /* Limit sky clearness */
962     if (sky_clearness > 12.0)
963     sky_clearness = 12.0;
964    
965     /* Limit sky brightness */
966 greg 2.9 if (sky_brightness < 0.01)
967 greg 2.1 sky_brightness = 0.01;
968     }
969    
970     return GetCategoryIndex();
971     }
972    
973     /* Calculate relative luminance */
974    
975     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
976     /* ìAll-Weather Model for Sky Luminance Distribution - */
977     /* Preliminary Configuration and Validation,î Solar Energy */
978     /* 50(3):235-245, Eqn. 1. */
979    
980     double CalcRelLuminance( double gamma, double zeta )
981     {
982     return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
983     (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
984     perez_param[4] * cos(gamma) * cos(gamma));
985     }
986    
987     /* Calculate Perez sky model parameters */
988    
989     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
990     /* ìAll-Weather Model for Sky Luminance Distribution - */
991     /* Preliminary Configuration and Validation,î Solar Energy */
992     /* 50(3):235-245, Eqns. 6 - 8. */
993    
994     void CalcPerezParam( double sz, double epsilon, double delta,
995     int index )
996     {
997     double x[5][4]; /* Coefficents a, b, c, d, e */
998     int i, j; /* Loop indices */
999    
1000     /* Limit sky brightness */
1001     if (epsilon > 1.065 && epsilon < 2.8)
1002     {
1003     if (delta < 0.2)
1004     delta = 0.2;
1005     }
1006    
1007     /* Get Perez coefficients */
1008     for (i = 0; i < 5; i++)
1009     for (j = 0; j < 4; j++)
1010     x[i][j] = PerezCoeff[index][4 * i + j];
1011    
1012     if (index != 0)
1013     {
1014     /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1015     for (i = 0; i < 5; i++)
1016     perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1017     x[i][3] * sz);
1018     }
1019     else
1020     {
1021     /* Parameters a, b and e (Eqn. 6) */
1022     perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1023     x[0][3] * sz);
1024     perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1025     x[1][3] * sz);
1026     perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1027     x[4][3] * sz);
1028    
1029     /* Parameter c (Eqn. 7) */
1030     perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1031     x[2][2])) - x[2][3];
1032    
1033     /* Parameter d (Eqn. 8) */
1034     perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1035     x[3][2] + delta * x[3][3];
1036     }
1037     }
1038    
1039     /* Calculate relative horizontal illuminance (modified by GW) */
1040    
1041     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1042     /* ìAll-Weather Model for Sky Luminance Distribution - */
1043     /* Preliminary Configuration and Validation,î Solar Energy */
1044     /* 50(3):235-245, Eqn. 3. */
1045    
1046     double CalcRelHorzIllum( float *parr )
1047     {
1048     int i;
1049     double rh_illum = 0.0; /* Relative horizontal illuminance */
1050    
1051     for (i = 1; i < nskypatch; i++)
1052 greg 2.7 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1053 greg 2.1
1054 greg 2.7 return rh_illum;
1055 greg 2.1 }
1056    
1057     /* Calculate earth orbit eccentricity correction factor */
1058    
1059     /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1060     /* Techniques. Springer, p. 72. */
1061    
1062     double CalcEccentricity()
1063     {
1064     double day_angle; /* Day angle (radians) */
1065     double E0; /* Eccentricity */
1066    
1067     /* Calculate day angle */
1068     day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1069    
1070     /* Calculate eccentricity */
1071     E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1072     + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1073     day_angle);
1074    
1075     return E0;
1076     }
1077    
1078     /* Calculate atmospheric precipitable water content */
1079    
1080     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1081     /* Stewart. 1990. ìModeling Daylight Availability and */
1082     /* Irradiance Components from Direct and Global */
1083     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1084    
1085     /* Note: The default surface dew point temperature is 11 deg. C */
1086     /* (52 deg. F). Typical values are: */
1087    
1088     /* Celsius Fahrenheit Human Perception */
1089     /* > 24 > 75 Extremely uncomfortable */
1090     /* 21 - 24 70 - 74 Very humid */
1091     /* 18 - 21 65 - 69 Somewhat uncomfortable */
1092     /* 16 - 18 60 - 64 OK for most people */
1093     /* 13 - 16 55 - 59 Comfortable */
1094     /* 10 - 12 50 - 54 Very comfortable */
1095     /* < 10 < 49 A bit dry for some */
1096    
1097     double CalcPrecipWater( double dpt )
1098     { return exp(0.07 * dpt - 0.075); }
1099    
1100     /* Calculate relative air mass */
1101    
1102     /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1103     /* for the Relative Optical Air Mass," Arch. Meteorol. */
1104     /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1105    
1106     /* Note: More sophisticated relative air mass models are */
1107     /* available, but they differ significantly only for */
1108     /* sun zenith angles greater than 80 degrees. */
1109    
1110     double CalcAirMass()
1111     {
1112     return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1113     RadToDeg(sun_zenith), -1.253)));
1114     }
1115    
1116     /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1117    
1118     /* NOTE: The sky patches centers are determined in accordance with the */
1119     /* BRE-IDMP sky luminance measurement procedures. (See for example */
1120     /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1121     /* for the Validation of Illuminance Prediction Techniques," */
1122     /* Lighting Research & Technology 33(2):117-136.) */
1123    
1124     void CalcSkyPatchLumin( float *parr )
1125     {
1126     int i;
1127     double aas; /* Sun-sky point azimuthal angle */
1128     double sspa; /* Sun-sky point angle */
1129     double zsa; /* Zenithal sun angle */
1130    
1131     for (i = 1; i < nskypatch; i++)
1132     {
1133     /* Calculate sun-sky point azimuthal angle */
1134     aas = fabs(rh_pazi[i] - azimuth);
1135    
1136     /* Calculate zenithal sun angle */
1137     zsa = PI * 0.5 - rh_palt[i];
1138    
1139     /* Calculate sun-sky point angle (Equation 8-20) */
1140     sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1141     sin(zsa) * cos(aas));
1142    
1143     /* Calculate patch luminance */
1144     parr[3*i] = CalcRelLuminance(sspa, zsa);
1145     if (parr[3*i] < 0) parr[3*i] = 0;
1146     parr[3*i+2] = parr[3*i+1] = parr[3*i];
1147     }
1148     }