ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.28
Committed: Tue Jun 25 17:06:36 2019 UTC (4 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.27: +17 -17 lines
Log Message:
Fixed bug for first data being zero and renamed variables

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.28 static const char RCSid[] = "$Id: gendaymtx.c,v 2.27 2019/06/25 00:09:45 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * gendaymtx.c
6     *
7     * Generate a daylight matrix based on Perez Sky Model.
8     *
9     * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10     * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11     *
12     * Created by Greg Ward on 1/16/13.
13     */
14    
15     /*********************************************************************
16     *
17     * H32_gendaylit.CPP - Perez Sky Model Calculation
18     *
19     * Version: 1.00A
20     *
21     * History: 09/10/01 - Created.
22     * 11/10/08 - Modified for Unix compilation.
23     * 11/10/12 - Fixed conditional __max directive.
24     * 1/11/13 - Tweaks and optimizations (G.Ward)
25     *
26     * Compilers: Microsoft Visual C/C++ Professional V10.0
27     *
28     * Author: Ian Ashdown, P.Eng.
29     * byHeart Consultants Limited
30     * 620 Ballantree Road
31     * West Vancouver, B.C.
32     * Canada V7S 1W3
33     * e-mail: [email protected]
34     *
35     * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36     * Stewart. 1990. ìModeling Daylight Availability and
37     * Irradiance Components from Direct and Global
38     * Irradiance,î Solar Energy 44(5):271-289.
39     *
40     * Perez, R., R. Seals, and J. Michalsky. 1993.
41     * ìAll-Weather Model for Sky Luminance Distribution -
42     * Preliminary Configuration and Validation,î Solar Energy
43     * 50(3):235-245.
44     *
45     * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46     * All-Weather Model for Sky Luminance Distribution -
47     * Preliminary Configuration and Validation,î Solar Energy
48     * 51(5):423.
49     *
50     * NOTE: This program is a completely rewritten version of
51     * gendaylit.c written by Jean-Jacques Delaunay (1994).
52     *
53     * Copyright 2009-2012 byHeart Consultants Limited. All rights
54     * reserved.
55     *
56     * Redistribution and use in source and binary forms, with or without
57     * modification, are permitted for personal and commercial purposes
58     * provided that redistribution of source code must retain the above
59     * copyright notice, this list of conditions and the following
60     * disclaimer:
61     *
62     * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65     * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66     * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70     * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73     * POSSIBILITY OF SUCH DAMAGE.
74     *
75     *********************************************************************/
76    
77     /* Zenith is along the Z-axis */
78     /* X-axis points east */
79     /* Y-axis points north */
80     /* azimuth is measured as degrees or radians east of North */
81    
82     /* Include files */
83     #define _USE_MATH_DEFINES
84     #include <stdio.h>
85     #include <stdlib.h>
86     #include <string.h>
87     #include <ctype.h>
88     #include "rtmath.h"
89 greg 2.23 #include "rtio.h"
90 greg 2.20 #include "resolu.h"
91 greg 2.14 #include "platform.h"
92 greg 2.1 #include "color.h"
93 greg 2.17 #include "resolu.h"
94 greg 2.1
95     char *progname; /* Program name */
96     char errmsg[128]; /* Error message buffer */
97     const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
98     const double DC_SolarConstantL = 127.5; /* Solar constant klux */
99    
100     double altitude; /* Solar altitude (radians) */
101     double azimuth; /* Solar azimuth (radians) */
102     double apwc; /* Atmospheric precipitable water content */
103     double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
104     double diff_illum; /* Diffuse illuminance */
105     double diff_irrad; /* Diffuse irradiance */
106     double dir_illum; /* Direct illuminance */
107     double dir_irrad; /* Direct irradiance */
108     int julian_date; /* Julian date */
109     double perez_param[5]; /* Perez sky model parameters */
110     double sky_brightness; /* Sky brightness */
111     double sky_clearness; /* Sky clearness */
112     double solar_rad; /* Solar radiance */
113     double sun_zenith; /* Sun zenith angle (radians) */
114     int input = 0; /* Input type */
115 greg 2.11 int output = 0; /* Output type */
116 greg 2.1
117     extern double dmax( double, double );
118     extern double CalcAirMass();
119     extern double CalcDiffuseIllumRatio( int );
120     extern double CalcDiffuseIrradiance();
121     extern double CalcDirectIllumRatio( int );
122     extern double CalcDirectIrradiance();
123     extern double CalcEccentricity();
124     extern double CalcPrecipWater( double );
125     extern double CalcRelHorzIllum( float *parr );
126     extern double CalcRelLuminance( double, double );
127     extern double CalcSkyBrightness();
128     extern double CalcSkyClearness();
129     extern int CalcSkyParamFromIllum();
130     extern int GetCategoryIndex();
131     extern void CalcPerezParam( double, double, double, int );
132     extern void CalcSkyPatchLumin( float *parr );
133     extern void ComputeSky( float *parr );
134    
135     /* Degrees into radians */
136     #define DegToRad(deg) ((deg)*(PI/180.))
137    
138     /* Radiuans into degrees */
139     #define RadToDeg(rad) ((rad)*(180./PI))
140    
141    
142     /* Perez sky model coefficients */
143    
144     /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
145     /* Weather Model for Sky Luminance Distribution - */
146     /* Preliminary Configuration and Validation," Solar */
147     /* Energy 50(3):235-245, Table 1. */
148    
149     static const double PerezCoeff[8][20] =
150     {
151     /* Sky clearness (epsilon): 1.000 to 1.065 */
152     { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
153     0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
154     1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
155     0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
156     /* Sky clearness (epsilon): 1.065 to 1.230 */
157     { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
158     0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
159     6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
160     0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
161     /* Sky clearness (epsilon): 1.230 to 1.500 */
162     { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
163     -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
164     -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
165     -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
166     /* Sky clearness (epsilon): 1.500 to 1.950 */
167     { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
168     -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
169     -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
170     0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
171     /* Sky clearness (epsilon): 1.950 to 2.800 */
172     { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
173     0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
174     -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
175     0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
176     /* Sky clearness (epsilon): 2.800 to 4.500 */
177     { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
178     -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
179     -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
180     1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
181     /* Sky clearness (epsilon): 4.500 to 6.200 */
182     { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
183     0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
184     1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
185     0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
186     /* Sky clearness (epsilon): 6.200 to ... */
187     { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
188     0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
189     -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
190     0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
191     };
192    
193     /* Perez irradiance component model coefficients */
194    
195     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
196     /* Stewart. 1990. ìModeling Daylight Availability and */
197     /* Irradiance Components from Direct and Global */
198     /* Irradiance,î Solar Energy 44(5):271-289. */
199    
200     typedef struct
201     {
202     double lower; /* Lower bound */
203     double upper; /* Upper bound */
204     } CategoryBounds;
205    
206     /* Perez sky clearness (epsilon) categories (Table 1) */
207     static const CategoryBounds SkyClearCat[8] =
208     {
209     { 1.000, 1.065 }, /* Overcast */
210     { 1.065, 1.230 },
211     { 1.230, 1.500 },
212     { 1.500, 1.950 },
213     { 1.950, 2.800 },
214     { 2.800, 4.500 },
215     { 4.500, 6.200 },
216 greg 2.12 { 6.200, 12.01 } /* Clear */
217 greg 2.1 };
218    
219     /* Luminous efficacy model coefficients */
220     typedef struct
221     {
222     double a;
223     double b;
224     double c;
225     double d;
226     } ModelCoeff;
227    
228     /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
229     static const ModelCoeff DiffuseLumEff[8] =
230     {
231     { 97.24, -0.46, 12.00, -8.91 },
232     { 107.22, 1.15, 0.59, -3.95 },
233     { 104.97, 2.96, -5.53, -8.77 },
234     { 102.39, 5.59, -13.95, -13.90 },
235     { 100.71, 5.94, -22.75, -23.74 },
236     { 106.42, 3.83, -36.15, -28.83 },
237     { 141.88, 1.90, -53.24, -14.03 },
238     { 152.23, 0.35, -45.27, -7.98 }
239     };
240    
241     /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
242     static const ModelCoeff DirectLumEff[8] =
243     {
244     { 57.20, -4.55, -2.98, 117.12 },
245     { 98.99, -3.46, -1.21, 12.38 },
246     { 109.83, -4.90, -1.71, -8.81 },
247     { 110.34, -5.84, -1.99, -4.56 },
248     { 106.36, -3.97, -1.75, -6.16 },
249     { 107.19, -1.25, -1.51, -26.73 },
250     { 105.75, 0.77, -1.26, -34.44 },
251     { 101.18, 1.58, -1.10, -8.29 }
252     };
253    
254 greg 2.3 #ifndef NSUNPATCH
255 greg 2.10 #define NSUNPATCH 4 /* max. # patches to spread sun into */
256 greg 2.3 #endif
257    
258 greg 2.1 extern int jdate(int month, int day);
259     extern double stadj(int jd);
260     extern double sdec(int jd);
261     extern double salt(double sd, double st);
262     extern double sazi(double sd, double st);
263     /* sun calculation constants */
264     extern double s_latitude;
265     extern double s_longitude;
266     extern double s_meridian;
267    
268 greg 2.10 int nsuns = NSUNPATCH; /* number of sun patches to use */
269     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
270    
271 greg 2.1 int verbose = 0; /* progress reports to stderr? */
272    
273     int outfmt = 'a'; /* output format */
274    
275     int rhsubdiv = 1; /* Reinhart sky subdivisions */
276    
277 greg 2.4 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
278     COLOR suncolor = {1., 1., 1.}; /* sun color */
279     COLOR grefl = {.2, .2, .2}; /* ground reflectance */
280 greg 2.1
281     int nskypatch; /* number of Reinhart patches */
282     float *rh_palt; /* sky patch altitudes (radians) */
283     float *rh_pazi; /* sky patch azimuths (radians) */
284     float *rh_dom; /* sky patch solid angle (sr) */
285    
286     #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
287     (v)[0] = (v)[1]*tsin(azi), \
288     (v)[1] *= tcos(azi), \
289     (v)[2] = tsin(alt) )
290    
291     #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
292    
293     #define rh_cos(i) tsin(rh_palt[i])
294    
295     extern int rh_init(void);
296     extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
297     extern void AddDirect(float *parr);
298    
299 greg 2.14
300     static const char *
301     getfmtname(int fmt)
302     {
303     switch (fmt) {
304     case 'a':
305     return("ascii");
306     case 'f':
307     return("float");
308     case 'd':
309     return("double");
310     }
311     return("unknown");
312     }
313    
314    
315 greg 2.1 int
316     main(int argc, char *argv[])
317     {
318     char buf[256];
319 greg 2.14 int doheader = 1; /* output header? */
320 greg 2.8 double rotation = 0; /* site rotation (degrees) */
321 greg 2.1 double elevation; /* site elevation (meters) */
322     int dir_is_horiz; /* direct is meas. on horizontal? */
323     float *mtx_data = NULL; /* our matrix data */
324 greg 2.28 int avgSky = 0; /* compute average sky r.t. matrix? */
325 greg 2.27 int ntsteps = 0; /* number of time steps */
326 greg 2.28 int tstorage = 0; /* number of allocated time steps */
327     int nstored = 0; /* number of time steps in matrix */
328 greg 2.1 int last_monthly = 0; /* month of last report */
329 greg 2.22 int inconsistent = 0; /* inconsistent options set? */
330 greg 2.1 int mo, da; /* month (1-12) and day (1-31) */
331     double hr; /* hour (local standard time) */
332     double dir, dif; /* direct and diffuse values */
333     int mtx_offset;
334     int i, j;
335    
336     progname = argv[0];
337     /* get options */
338     for (i = 1; i < argc && argv[i][0] == '-'; i++)
339     switch (argv[i][1]) {
340 greg 2.4 case 'g': /* ground reflectance */
341     grefl[0] = atof(argv[++i]);
342     grefl[1] = atof(argv[++i]);
343     grefl[2] = atof(argv[++i]);
344 greg 2.1 break;
345 greg 2.4 case 'v': /* verbose progress reports */
346 greg 2.1 verbose++;
347     break;
348 greg 2.14 case 'h': /* turn off header */
349     doheader = 0;
350     break;
351 greg 2.4 case 'o': /* output format */
352 greg 2.1 switch (argv[i][2]) {
353     case 'f':
354     case 'd':
355     case 'a':
356     outfmt = argv[i][2];
357     break;
358     default:
359     goto userr;
360     }
361     break;
362 greg 2.11 case 'O': /* output type */
363     switch (argv[i][2]) {
364     case '0':
365     output = 0;
366     break;
367     case '1':
368     output = 1;
369     break;
370     default:
371     goto userr;
372     }
373     if (argv[i][3])
374     goto userr;
375     break;
376 greg 2.4 case 'm': /* Reinhart subdivisions */
377 greg 2.1 rhsubdiv = atoi(argv[++i]);
378     break;
379 greg 2.4 case 'c': /* sky color */
380 greg 2.22 inconsistent |= (skycolor[1] <= 1e-4);
381 greg 2.1 skycolor[0] = atof(argv[++i]);
382     skycolor[1] = atof(argv[++i]);
383     skycolor[2] = atof(argv[++i]);
384     break;
385 greg 2.4 case 'd': /* solar (direct) only */
386 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 0;
387 greg 2.22 if (suncolor[1] <= 1e-4) {
388     inconsistent = 1;
389 greg 2.4 suncolor[0] = suncolor[1] = suncolor[2] = 1;
390 greg 2.22 }
391 greg 2.1 break;
392 greg 2.4 case 's': /* sky only (no direct) */
393     suncolor[0] = suncolor[1] = suncolor[2] = 0;
394 greg 2.22 if (skycolor[1] <= 1e-4) {
395     inconsistent = 1;
396 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 1;
397 greg 2.22 }
398 greg 2.1 break;
399 greg 2.8 case 'r': /* rotate distribution */
400     if (argv[i][2] && argv[i][2] != 'z')
401     goto userr;
402     rotation = atof(argv[++i]);
403     break;
404 greg 2.10 case '5': /* 5-phase calculation */
405     nsuns = 1;
406 greg 2.19 fixed_sun_sa = PI/360.*atof(argv[++i]);
407 greg 2.21 if (fixed_sun_sa <= 0) {
408     fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
409     argv[0]);
410     exit(1);
411     }
412 greg 2.19 fixed_sun_sa *= fixed_sun_sa*PI;
413 greg 2.10 break;
414 greg 2.27 case 'A': /* compute average sky */
415     avgSky = 1;
416     break;
417 greg 2.1 default:
418     goto userr;
419     }
420     if (i < argc-1)
421     goto userr;
422 greg 2.22 if (inconsistent)
423     fprintf(stderr, "%s: WARNING: inconsistent -s, -d, -c options!\n",
424     progname);
425 greg 2.1 if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
426     fprintf(stderr, "%s: cannot open '%s' for input\n",
427     progname, argv[i]);
428     exit(1);
429     }
430     if (verbose) {
431     if (i == argc-1)
432     fprintf(stderr, "%s: reading weather tape '%s'\n",
433     progname, argv[i]);
434     else
435     fprintf(stderr, "%s: reading weather tape from <stdin>\n",
436     progname);
437     }
438     /* read weather tape header */
439 greg 2.2 if (scanf("place %[^\r\n] ", buf) != 1)
440 greg 2.1 goto fmterr;
441     if (scanf("latitude %lf\n", &s_latitude) != 1)
442     goto fmterr;
443     if (scanf("longitude %lf\n", &s_longitude) != 1)
444     goto fmterr;
445     if (scanf("time_zone %lf\n", &s_meridian) != 1)
446     goto fmterr;
447     if (scanf("site_elevation %lf\n", &elevation) != 1)
448     goto fmterr;
449     if (scanf("weather_data_file_units %d\n", &input) != 1)
450     goto fmterr;
451     switch (input) { /* translate units */
452     case 1:
453     input = 1; /* radiometric quantities */
454     dir_is_horiz = 0; /* direct is perpendicular meas. */
455     break;
456     case 2:
457     input = 1; /* radiometric quantities */
458     dir_is_horiz = 1; /* solar measured horizontally */
459     break;
460     case 3:
461     input = 2; /* photometric quantities */
462     dir_is_horiz = 0; /* direct is perpendicular meas. */
463     break;
464     default:
465     goto fmterr;
466     }
467     rh_init(); /* initialize sky patches */
468     if (verbose) {
469     fprintf(stderr, "%s: location '%s'\n", progname, buf);
470     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
471     progname, s_latitude, s_longitude);
472     fprintf(stderr, "%s: %d sky patches per time step\n",
473     progname, nskypatch);
474 greg 2.8 if (rotation != 0)
475     fprintf(stderr, "%s: rotating output %.0f degrees\n",
476     progname, rotation);
477 greg 2.1 }
478 greg 2.2 /* convert quantities to radians */
479     s_latitude = DegToRad(s_latitude);
480     s_longitude = DegToRad(s_longitude);
481     s_meridian = DegToRad(s_meridian);
482 greg 2.27 /* initial allocation */
483 greg 2.28 mtx_data = resize_dmatrix(mtx_data, tstorage=2, nskypatch);
484 greg 2.1 /* process each time step in tape */
485     while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
486     double sda, sta;
487 greg 2.27
488 greg 2.28 mtx_offset = 3*nskypatch*nstored;
489     nstored += !avgSky | !nstored;
490 greg 2.27 /* make space for next row */
491 greg 2.28 if (nstored > tstorage) {
492     tstorage += (tstorage>>1) + nstored + 7;
493     mtx_data = resize_dmatrix(mtx_data, tstorage, nskypatch);
494 greg 2.15 }
495 greg 2.27 ntsteps++; /* keep count of time steps */
496 greg 2.1 if (dif <= 1e-4) {
497 greg 2.28 if (!avgSky | !mtx_offset)
498 greg 2.27 memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
499 greg 2.1 continue;
500     }
501     if (verbose && mo != last_monthly)
502     fprintf(stderr, "%s: stepping through month %d...\n",
503     progname, last_monthly=mo);
504     /* compute solar position */
505     julian_date = jdate(mo, da);
506     sda = sdec(julian_date);
507     sta = stadj(julian_date);
508     altitude = salt(sda, hr+sta);
509 greg 2.8 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
510 greg 2.1 /* convert measured values */
511     if (dir_is_horiz && altitude > 0.)
512     dir /= sin(altitude);
513     if (input == 1) {
514     dir_irrad = dir;
515     diff_irrad = dif;
516     } else /* input == 2 */ {
517     dir_illum = dir;
518     diff_illum = dif;
519     }
520     /* compute sky patch values */
521     ComputeSky(mtx_data+mtx_offset);
522 greg 2.4 AddDirect(mtx_data+mtx_offset);
523 greg 2.27 /* update cumulative sky? */
524     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
525     mtx_data[i] += mtx_data[mtx_offset+i];
526 greg 2.1 }
527     /* check for junk at end */
528     while ((i = fgetc(stdin)) != EOF)
529     if (!isspace(i)) {
530     fprintf(stderr, "%s: warning - unexpected data past EOT: ",
531     progname);
532     buf[0] = i; buf[1] = '\0';
533     fgets(buf+1, sizeof(buf)-1, stdin);
534     fputs(buf, stderr); fputc('\n', stderr);
535     break;
536     }
537 greg 2.27 if (!ntsteps) {
538     fprintf(stderr, "%s: no valid time steps on input\n", progname);
539     exit(1);
540     }
541     dif = 1./(double)ntsteps; /* average sky? */
542     for (i = 3*nskypatch*(avgSky&(ntsteps>1)); i--; )
543     mtx_data[i] *= dif;
544 greg 2.1 /* write out matrix */
545 greg 2.14 if (outfmt != 'a')
546     SET_FILE_BINARY(stdout);
547 greg 2.1 #ifdef getc_unlocked
548     flockfile(stdout);
549     #endif
550     if (verbose)
551     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
552 greg 2.28 progname, outfmt=='a' ? "" : "binary ", nstored);
553 greg 2.14 if (doheader) {
554     newheader("RADIANCE", stdout);
555     printargs(argc, argv, stdout);
556     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
557     -RadToDeg(s_longitude));
558     printf("NROWS=%d\n", nskypatch);
559 greg 2.28 printf("NCOLS=%d\n", nstored);
560 greg 2.14 printf("NCOMP=3\n");
561 greg 2.18 fputformat((char *)getfmtname(outfmt), stdout);
562 greg 2.14 putchar('\n');
563     }
564 greg 2.1 /* patches are rows (outer sort) */
565     for (i = 0; i < nskypatch; i++) {
566     mtx_offset = 3*i;
567     switch (outfmt) {
568     case 'a':
569 greg 2.28 for (j = 0; j < nstored; j++) {
570 greg 2.3 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
571 greg 2.1 mtx_data[mtx_offset+1],
572     mtx_data[mtx_offset+2]);
573     mtx_offset += 3*nskypatch;
574     }
575 greg 2.28 if (nstored > 1)
576 greg 2.2 fputc('\n', stdout);
577 greg 2.1 break;
578     case 'f':
579 greg 2.28 for (j = 0; j < nstored; j++) {
580 greg 2.23 putbinary(mtx_data+mtx_offset, sizeof(float), 3,
581 greg 2.1 stdout);
582     mtx_offset += 3*nskypatch;
583     }
584     break;
585     case 'd':
586 greg 2.28 for (j = 0; j < nstored; j++) {
587 greg 2.1 double ment[3];
588     ment[0] = mtx_data[mtx_offset];
589     ment[1] = mtx_data[mtx_offset+1];
590     ment[2] = mtx_data[mtx_offset+2];
591 greg 2.23 putbinary(ment, sizeof(double), 3, stdout);
592 greg 2.1 mtx_offset += 3*nskypatch;
593     }
594     break;
595     }
596     if (ferror(stdout))
597     goto writerr;
598     }
599     if (fflush(stdout) == EOF)
600     goto writerr;
601     if (verbose)
602     fprintf(stderr, "%s: done.\n", progname);
603     exit(0);
604     userr:
605 greg 2.27 fprintf(stderr, "Usage: %s [-v][-h][-A][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
606 greg 2.1 progname);
607     exit(1);
608     fmterr:
609     fprintf(stderr, "%s: input weather tape format error\n", progname);
610     exit(1);
611     writerr:
612     fprintf(stderr, "%s: write error on output\n", progname);
613     exit(1);
614     }
615    
616     /* Return maximum of two doubles */
617     double dmax( double a, double b )
618     { return (a > b) ? a : b; }
619    
620     /* Compute sky patch radiance values (modified by GW) */
621     void
622     ComputeSky(float *parr)
623     {
624     int index; /* Category index */
625     double norm_diff_illum; /* Normalized diffuse illuimnance */
626     int i;
627    
628     /* Calculate atmospheric precipitable water content */
629     apwc = CalcPrecipWater(dew_point);
630    
631 greg 2.6 /* Calculate sun zenith angle (don't let it dip below horizon) */
632     /* Also limit minimum angle to keep circumsolar off zenith */
633     if (altitude <= 0.0)
634     sun_zenith = DegToRad(90.0);
635     else if (altitude >= DegToRad(87.0))
636     sun_zenith = DegToRad(3.0);
637     else
638     sun_zenith = DegToRad(90.0) - altitude;
639 greg 2.1
640     /* Compute the inputs for the calculation of the sky distribution */
641    
642     if (input == 0) /* XXX never used */
643     {
644     /* Calculate irradiance */
645     diff_irrad = CalcDiffuseIrradiance();
646     dir_irrad = CalcDirectIrradiance();
647    
648     /* Calculate illuminance */
649     index = GetCategoryIndex();
650     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
651     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
652     }
653     else if (input == 1)
654     {
655     sky_brightness = CalcSkyBrightness();
656     sky_clearness = CalcSkyClearness();
657    
658 greg 2.9 /* Limit sky clearness */
659     if (sky_clearness > 11.9)
660     sky_clearness = 11.9;
661    
662     /* Limit sky brightness */
663     if (sky_brightness < 0.01)
664 greg 2.11 sky_brightness = 0.01;
665 greg 2.9
666 greg 2.1 /* Calculate illuminance */
667     index = GetCategoryIndex();
668     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
669     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
670     }
671     else if (input == 2)
672     {
673     /* Calculate sky brightness and clearness from illuminance values */
674     index = CalcSkyParamFromIllum();
675     }
676    
677 greg 2.11 if (output == 1) { /* hack for solar radiance */
678     diff_illum = diff_irrad * WHTEFFICACY;
679     dir_illum = dir_irrad * WHTEFFICACY;
680     }
681    
682 greg 2.2 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
683     memset(parr, 0, sizeof(float)*3*nskypatch);
684     return;
685     }
686 greg 2.1 /* Compute ground radiance (include solar contribution if any) */
687 greg 2.3 parr[0] = diff_illum;
688 greg 2.1 if (altitude > 0)
689 greg 2.3 parr[0] += dir_illum * sin(altitude);
690 greg 2.4 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
691     multcolor(parr, grefl);
692 greg 2.1
693     /* Calculate Perez sky model parameters */
694     CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
695    
696     /* Calculate sky patch luminance values */
697     CalcSkyPatchLumin(parr);
698    
699     /* Calculate relative horizontal illuminance */
700     norm_diff_illum = CalcRelHorzIllum(parr);
701    
702 greg 2.13 /* Check for zero sky -- make uniform in that case */
703     if (norm_diff_illum <= FTINY) {
704     for (i = 1; i < nskypatch; i++)
705     setcolor(parr+3*i, 1., 1., 1.);
706     norm_diff_illum = PI;
707     }
708 greg 2.1 /* Normalization coefficient */
709     norm_diff_illum = diff_illum / norm_diff_illum;
710    
711     /* Apply to sky patches to get absolute radiance values */
712     for (i = 1; i < nskypatch; i++) {
713 greg 2.7 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
714 greg 2.1 multcolor(parr+3*i, skycolor);
715     }
716     }
717    
718     /* Add in solar direct to nearest sky patches (GW) */
719     void
720     AddDirect(float *parr)
721     {
722     FVECT svec;
723 greg 2.3 double near_dprod[NSUNPATCH];
724     int near_patch[NSUNPATCH];
725     double wta[NSUNPATCH], wtot;
726 greg 2.1 int i, j, p;
727    
728 greg 2.4 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
729 greg 2.1 return;
730 greg 2.10 /* identify nsuns closest patches */
731     if (nsuns > NSUNPATCH)
732     nsuns = NSUNPATCH;
733     else if (nsuns <= 0)
734     nsuns = 1;
735     for (i = nsuns; i--; )
736 greg 2.1 near_dprod[i] = -1.;
737     vector(svec, altitude, azimuth);
738     for (p = 1; p < nskypatch; p++) {
739     FVECT pvec;
740     double dprod;
741     rh_vector(pvec, p);
742     dprod = DOT(pvec, svec);
743 greg 2.10 for (i = 0; i < nsuns; i++)
744 greg 2.1 if (dprod > near_dprod[i]) {
745 greg 2.10 for (j = nsuns; --j > i; ) {
746 greg 2.1 near_dprod[j] = near_dprod[j-1];
747     near_patch[j] = near_patch[j-1];
748     }
749     near_dprod[i] = dprod;
750     near_patch[i] = p;
751     break;
752     }
753     }
754     wtot = 0; /* weight by proximity */
755 greg 2.10 for (i = nsuns; i--; )
756 greg 2.1 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
757     /* add to nearest patch radiances */
758 greg 2.10 for (i = nsuns; i--; ) {
759 greg 2.2 float *pdest = parr + 3*near_patch[i];
760 greg 2.10 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
761    
762     val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
763     : rh_dom[near_patch[i]] ;
764 greg 2.4 *pdest++ += val_add*suncolor[0];
765     *pdest++ += val_add*suncolor[1];
766     *pdest++ += val_add*suncolor[2];
767 greg 2.2 }
768 greg 2.1 }
769    
770     /* Initialize Reinhart sky patch positions (GW) */
771     int
772     rh_init(void)
773     {
774     #define NROW 7
775     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
776     const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
777     int p, i, j;
778     /* allocate patch angle arrays */
779     nskypatch = 0;
780     for (p = 0; p < NROW; p++)
781     nskypatch += tnaz[p];
782     nskypatch *= rhsubdiv*rhsubdiv;
783     nskypatch += 2;
784     rh_palt = (float *)malloc(sizeof(float)*nskypatch);
785     rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
786     rh_dom = (float *)malloc(sizeof(float)*nskypatch);
787     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
788     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
789     exit(1);
790     }
791     rh_palt[0] = -PI/2.; /* ground & zenith patches */
792     rh_pazi[0] = 0.;
793     rh_dom[0] = 2.*PI;
794     rh_palt[nskypatch-1] = PI/2.;
795     rh_pazi[nskypatch-1] = 0.;
796     rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
797     p = 1; /* "normal" patches */
798     for (i = 0; i < NROW*rhsubdiv; i++) {
799     const float ralt = alpha*(i + .5);
800     const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
801 greg 2.3 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
802     (double)ninrow;
803 greg 2.1 for (j = 0; j < ninrow; j++) {
804     rh_palt[p] = ralt;
805     rh_pazi[p] = 2.*PI * j / (double)ninrow;
806     rh_dom[p++] = dom;
807     }
808     }
809     return nskypatch;
810     #undef NROW
811     }
812    
813     /* Resize daylight matrix (GW) */
814     float *
815     resize_dmatrix(float *mtx_data, int nsteps, int npatch)
816     {
817     if (mtx_data == NULL)
818     mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
819     else
820     mtx_data = (float *)realloc(mtx_data,
821     sizeof(float)*3*nsteps*npatch);
822     if (mtx_data == NULL) {
823     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
824     progname, nsteps, npatch);
825     exit(1);
826     }
827     return(mtx_data);
828     }
829    
830     /* Determine category index */
831     int GetCategoryIndex()
832     {
833     int index; /* Loop index */
834    
835     for (index = 0; index < 8; index++)
836     if ((sky_clearness >= SkyClearCat[index].lower) &&
837     (sky_clearness < SkyClearCat[index].upper))
838     break;
839    
840     return index;
841     }
842    
843     /* Calculate diffuse illuminance to diffuse irradiance ratio */
844    
845     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
846     /* Stewart. 1990. ìModeling Daylight Availability and */
847     /* Irradiance Components from Direct and Global */
848     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
849    
850     double CalcDiffuseIllumRatio( int index )
851     {
852     ModelCoeff const *pnle; /* Category coefficient pointer */
853    
854     /* Get category coefficient pointer */
855     pnle = &(DiffuseLumEff[index]);
856    
857     return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
858     pnle->d * log(sky_brightness);
859     }
860    
861     /* Calculate direct illuminance to direct irradiance ratio */
862    
863     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
864     /* Stewart. 1990. ìModeling Daylight Availability and */
865     /* Irradiance Components from Direct and Global */
866     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
867    
868     double CalcDirectIllumRatio( int index )
869     {
870     ModelCoeff const *pnle; /* Category coefficient pointer */
871    
872     /* Get category coefficient pointer */
873     pnle = &(DirectLumEff[index]);
874    
875     /* Calculate direct illuminance from direct irradiance */
876    
877     return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
878     sun_zenith - 5.0) + pnle->d * sky_brightness),
879     0.0);
880     }
881    
882     /* Calculate sky brightness */
883    
884     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
885     /* Stewart. 1990. ìModeling Daylight Availability and */
886     /* Irradiance Components from Direct and Global */
887     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
888    
889     double CalcSkyBrightness()
890     {
891     return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
892     CalcEccentricity());
893     }
894    
895     /* Calculate sky clearness */
896    
897     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
898     /* Stewart. 1990. ìModeling Daylight Availability and */
899     /* Irradiance Components from Direct and Global */
900     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
901    
902     double CalcSkyClearness()
903     {
904     double sz_cubed; /* Sun zenith angle cubed */
905    
906     /* Calculate sun zenith angle cubed */
907 greg 2.11 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
908 greg 2.1
909     return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
910     sz_cubed) / (1.0 + 1.041 * sz_cubed);
911     }
912    
913     /* Calculate diffuse horizontal irradiance from Perez sky brightness */
914    
915     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
916     /* Stewart. 1990. ìModeling Daylight Availability and */
917     /* Irradiance Components from Direct and Global */
918     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
919     /* (inverse). */
920    
921     double CalcDiffuseIrradiance()
922     {
923     return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
924     CalcAirMass();
925     }
926    
927     /* Calculate direct normal irradiance from Perez sky clearness */
928    
929     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
930     /* Stewart. 1990. ìModeling Daylight Availability and */
931     /* Irradiance Components from Direct and Global */
932     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
933     /* (inverse). */
934    
935     double CalcDirectIrradiance()
936     {
937     return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
938 greg 2.11 * sun_zenith*sun_zenith*sun_zenith));
939 greg 2.1 }
940    
941     /* Calculate sky brightness and clearness from illuminance values */
942     int CalcSkyParamFromIllum()
943     {
944     double test1 = 0.1;
945     double test2 = 0.1;
946     int counter = 0;
947     int index = 0; /* Category index */
948    
949     /* Convert illuminance to irradiance */
950     diff_irrad = diff_illum * DC_SolarConstantE /
951     (DC_SolarConstantL * 1000.0);
952     dir_irrad = dir_illum * DC_SolarConstantE /
953     (DC_SolarConstantL * 1000.0);
954    
955     /* Calculate sky brightness and clearness */
956     sky_brightness = CalcSkyBrightness();
957     sky_clearness = CalcSkyClearness();
958    
959     /* Limit sky clearness */
960     if (sky_clearness > 12.0)
961     sky_clearness = 12.0;
962    
963     /* Limit sky brightness */
964 greg 2.9 if (sky_brightness < 0.01)
965 greg 2.1 sky_brightness = 0.01;
966    
967     while (((fabs(diff_irrad - test1) > 10.0) ||
968     (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
969     {
970     test1 = diff_irrad;
971     test2 = dir_irrad;
972     counter++;
973    
974     /* Convert illuminance to irradiance */
975     index = GetCategoryIndex();
976     diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
977 greg 2.26 dir_irrad = CalcDirectIllumRatio(index);
978     if (dir_irrad > 0.1)
979     dir_irrad = dir_illum / dir_irrad;
980 greg 2.1
981     /* Calculate sky brightness and clearness */
982     sky_brightness = CalcSkyBrightness();
983     sky_clearness = CalcSkyClearness();
984    
985     /* Limit sky clearness */
986     if (sky_clearness > 12.0)
987     sky_clearness = 12.0;
988    
989     /* Limit sky brightness */
990 greg 2.9 if (sky_brightness < 0.01)
991 greg 2.1 sky_brightness = 0.01;
992     }
993    
994     return GetCategoryIndex();
995     }
996    
997     /* Calculate relative luminance */
998    
999     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1000     /* ìAll-Weather Model for Sky Luminance Distribution - */
1001     /* Preliminary Configuration and Validation,î Solar Energy */
1002     /* 50(3):235-245, Eqn. 1. */
1003    
1004     double CalcRelLuminance( double gamma, double zeta )
1005     {
1006     return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
1007     (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
1008     perez_param[4] * cos(gamma) * cos(gamma));
1009     }
1010    
1011     /* Calculate Perez sky model parameters */
1012    
1013     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1014     /* ìAll-Weather Model for Sky Luminance Distribution - */
1015     /* Preliminary Configuration and Validation,î Solar Energy */
1016     /* 50(3):235-245, Eqns. 6 - 8. */
1017    
1018     void CalcPerezParam( double sz, double epsilon, double delta,
1019     int index )
1020     {
1021     double x[5][4]; /* Coefficents a, b, c, d, e */
1022     int i, j; /* Loop indices */
1023    
1024     /* Limit sky brightness */
1025     if (epsilon > 1.065 && epsilon < 2.8)
1026     {
1027     if (delta < 0.2)
1028     delta = 0.2;
1029     }
1030    
1031     /* Get Perez coefficients */
1032     for (i = 0; i < 5; i++)
1033     for (j = 0; j < 4; j++)
1034     x[i][j] = PerezCoeff[index][4 * i + j];
1035    
1036     if (index != 0)
1037     {
1038     /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1039     for (i = 0; i < 5; i++)
1040     perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1041     x[i][3] * sz);
1042     }
1043     else
1044     {
1045     /* Parameters a, b and e (Eqn. 6) */
1046     perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1047     x[0][3] * sz);
1048     perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1049     x[1][3] * sz);
1050     perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1051     x[4][3] * sz);
1052    
1053     /* Parameter c (Eqn. 7) */
1054     perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1055     x[2][2])) - x[2][3];
1056    
1057     /* Parameter d (Eqn. 8) */
1058     perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1059     x[3][2] + delta * x[3][3];
1060     }
1061     }
1062    
1063     /* Calculate relative horizontal illuminance (modified by GW) */
1064    
1065     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1066     /* ìAll-Weather Model for Sky Luminance Distribution - */
1067     /* Preliminary Configuration and Validation,î Solar Energy */
1068     /* 50(3):235-245, Eqn. 3. */
1069    
1070     double CalcRelHorzIllum( float *parr )
1071     {
1072     int i;
1073     double rh_illum = 0.0; /* Relative horizontal illuminance */
1074    
1075     for (i = 1; i < nskypatch; i++)
1076 greg 2.7 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1077 greg 2.1
1078 greg 2.7 return rh_illum;
1079 greg 2.1 }
1080    
1081     /* Calculate earth orbit eccentricity correction factor */
1082    
1083     /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1084     /* Techniques. Springer, p. 72. */
1085    
1086     double CalcEccentricity()
1087     {
1088     double day_angle; /* Day angle (radians) */
1089     double E0; /* Eccentricity */
1090    
1091     /* Calculate day angle */
1092     day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1093    
1094     /* Calculate eccentricity */
1095     E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1096     + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1097     day_angle);
1098    
1099     return E0;
1100     }
1101    
1102     /* Calculate atmospheric precipitable water content */
1103    
1104     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1105     /* Stewart. 1990. ìModeling Daylight Availability and */
1106     /* Irradiance Components from Direct and Global */
1107     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1108    
1109     /* Note: The default surface dew point temperature is 11 deg. C */
1110     /* (52 deg. F). Typical values are: */
1111    
1112     /* Celsius Fahrenheit Human Perception */
1113     /* > 24 > 75 Extremely uncomfortable */
1114     /* 21 - 24 70 - 74 Very humid */
1115     /* 18 - 21 65 - 69 Somewhat uncomfortable */
1116     /* 16 - 18 60 - 64 OK for most people */
1117     /* 13 - 16 55 - 59 Comfortable */
1118     /* 10 - 12 50 - 54 Very comfortable */
1119     /* < 10 < 49 A bit dry for some */
1120    
1121     double CalcPrecipWater( double dpt )
1122     { return exp(0.07 * dpt - 0.075); }
1123    
1124     /* Calculate relative air mass */
1125    
1126     /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1127     /* for the Relative Optical Air Mass," Arch. Meteorol. */
1128     /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1129    
1130     /* Note: More sophisticated relative air mass models are */
1131     /* available, but they differ significantly only for */
1132     /* sun zenith angles greater than 80 degrees. */
1133    
1134     double CalcAirMass()
1135     {
1136     return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1137     RadToDeg(sun_zenith), -1.253)));
1138     }
1139    
1140     /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1141    
1142     /* NOTE: The sky patches centers are determined in accordance with the */
1143     /* BRE-IDMP sky luminance measurement procedures. (See for example */
1144     /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1145     /* for the Validation of Illuminance Prediction Techniques," */
1146     /* Lighting Research & Technology 33(2):117-136.) */
1147    
1148     void CalcSkyPatchLumin( float *parr )
1149     {
1150     int i;
1151     double aas; /* Sun-sky point azimuthal angle */
1152     double sspa; /* Sun-sky point angle */
1153     double zsa; /* Zenithal sun angle */
1154    
1155     for (i = 1; i < nskypatch; i++)
1156     {
1157     /* Calculate sun-sky point azimuthal angle */
1158     aas = fabs(rh_pazi[i] - azimuth);
1159    
1160     /* Calculate zenithal sun angle */
1161     zsa = PI * 0.5 - rh_palt[i];
1162    
1163     /* Calculate sun-sky point angle (Equation 8-20) */
1164     sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1165     sin(zsa) * cos(aas));
1166    
1167     /* Calculate patch luminance */
1168     parr[3*i] = CalcRelLuminance(sspa, zsa);
1169     if (parr[3*i] < 0) parr[3*i] = 0;
1170     parr[3*i+2] = parr[3*i+1] = parr[3*i];
1171     }
1172     }