ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaymtx.c
Revision: 2.21
Committed: Wed Sep 2 22:52:04 2015 UTC (8 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R0
Changes since 2.20: +6 -1 lines
Log Message:
Added error message to gendaymtx with -5 option used without argument

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.21 static const char RCSid[] = "$Id: gendaymtx.c,v 2.20 2015/08/01 23:27:04 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * gendaymtx.c
6     *
7     * Generate a daylight matrix based on Perez Sky Model.
8     *
9     * Most of this code is borrowed (see copyright below) from Ian Ashdown's
10     * excellent re-implementation of Jean-Jacques Delaunay's gendaylit.c
11     *
12     * Created by Greg Ward on 1/16/13.
13     */
14    
15     /*********************************************************************
16     *
17     * H32_gendaylit.CPP - Perez Sky Model Calculation
18     *
19     * Version: 1.00A
20     *
21     * History: 09/10/01 - Created.
22     * 11/10/08 - Modified for Unix compilation.
23     * 11/10/12 - Fixed conditional __max directive.
24     * 1/11/13 - Tweaks and optimizations (G.Ward)
25     *
26     * Compilers: Microsoft Visual C/C++ Professional V10.0
27     *
28     * Author: Ian Ashdown, P.Eng.
29     * byHeart Consultants Limited
30     * 620 Ballantree Road
31     * West Vancouver, B.C.
32     * Canada V7S 1W3
33     * e-mail: [email protected]
34     *
35     * References: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R.
36     * Stewart. 1990. ìModeling Daylight Availability and
37     * Irradiance Components from Direct and Global
38     * Irradiance,î Solar Energy 44(5):271-289.
39     *
40     * Perez, R., R. Seals, and J. Michalsky. 1993.
41     * ìAll-Weather Model for Sky Luminance Distribution -
42     * Preliminary Configuration and Validation,î Solar Energy
43     * 50(3):235-245.
44     *
45     * Perez, R., R. Seals, and J. Michalsky. 1993. "ERRATUM to
46     * All-Weather Model for Sky Luminance Distribution -
47     * Preliminary Configuration and Validation,î Solar Energy
48     * 51(5):423.
49     *
50     * NOTE: This program is a completely rewritten version of
51     * gendaylit.c written by Jean-Jacques Delaunay (1994).
52     *
53     * Copyright 2009-2012 byHeart Consultants Limited. All rights
54     * reserved.
55     *
56     * Redistribution and use in source and binary forms, with or without
57     * modification, are permitted for personal and commercial purposes
58     * provided that redistribution of source code must retain the above
59     * copyright notice, this list of conditions and the following
60     * disclaimer:
61     *
62     * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
63     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
64     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
65     * DISCLAIMED. IN NO EVENT SHALL byHeart Consultants Limited OR
66     * ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
68     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
69     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
70     * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
72     * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73     * POSSIBILITY OF SUCH DAMAGE.
74     *
75     *********************************************************************/
76    
77     /* Zenith is along the Z-axis */
78     /* X-axis points east */
79     /* Y-axis points north */
80     /* azimuth is measured as degrees or radians east of North */
81    
82     /* Include files */
83     #define _USE_MATH_DEFINES
84     #include <stdio.h>
85     #include <stdlib.h>
86     #include <string.h>
87     #include <ctype.h>
88     #include "rtmath.h"
89 greg 2.20 #include "resolu.h"
90 greg 2.14 #include "platform.h"
91 greg 2.1 #include "color.h"
92 greg 2.17 #include "resolu.h"
93 greg 2.1
94     char *progname; /* Program name */
95     char errmsg[128]; /* Error message buffer */
96     const double DC_SolarConstantE = 1367.0; /* Solar constant W/m^2 */
97     const double DC_SolarConstantL = 127.5; /* Solar constant klux */
98    
99     double altitude; /* Solar altitude (radians) */
100     double azimuth; /* Solar azimuth (radians) */
101     double apwc; /* Atmospheric precipitable water content */
102     double dew_point = 11.0; /* Surface dew point temperature (deg. C) */
103     double diff_illum; /* Diffuse illuminance */
104     double diff_irrad; /* Diffuse irradiance */
105     double dir_illum; /* Direct illuminance */
106     double dir_irrad; /* Direct irradiance */
107     int julian_date; /* Julian date */
108     double perez_param[5]; /* Perez sky model parameters */
109     double sky_brightness; /* Sky brightness */
110     double sky_clearness; /* Sky clearness */
111     double solar_rad; /* Solar radiance */
112     double sun_zenith; /* Sun zenith angle (radians) */
113     int input = 0; /* Input type */
114 greg 2.11 int output = 0; /* Output type */
115 greg 2.1
116     extern double dmax( double, double );
117     extern double CalcAirMass();
118     extern double CalcDiffuseIllumRatio( int );
119     extern double CalcDiffuseIrradiance();
120     extern double CalcDirectIllumRatio( int );
121     extern double CalcDirectIrradiance();
122     extern double CalcEccentricity();
123     extern double CalcPrecipWater( double );
124     extern double CalcRelHorzIllum( float *parr );
125     extern double CalcRelLuminance( double, double );
126     extern double CalcSkyBrightness();
127     extern double CalcSkyClearness();
128     extern int CalcSkyParamFromIllum();
129     extern int GetCategoryIndex();
130     extern void CalcPerezParam( double, double, double, int );
131     extern void CalcSkyPatchLumin( float *parr );
132     extern void ComputeSky( float *parr );
133    
134     /* Degrees into radians */
135     #define DegToRad(deg) ((deg)*(PI/180.))
136    
137     /* Radiuans into degrees */
138     #define RadToDeg(rad) ((rad)*(180./PI))
139    
140    
141     /* Perez sky model coefficients */
142    
143     /* Reference: Perez, R., R. Seals, and J. Michalsky, 1993. "All- */
144     /* Weather Model for Sky Luminance Distribution - */
145     /* Preliminary Configuration and Validation," Solar */
146     /* Energy 50(3):235-245, Table 1. */
147    
148     static const double PerezCoeff[8][20] =
149     {
150     /* Sky clearness (epsilon): 1.000 to 1.065 */
151     { 1.3525, -0.2576, -0.2690, -1.4366, -0.7670,
152     0.0007, 1.2734, -0.1233, 2.8000, 0.6004,
153     1.2375, 1.0000, 1.8734, 0.6297, 0.9738,
154     0.2809, 0.0356, -0.1246, -0.5718, 0.9938 },
155     /* Sky clearness (epsilon): 1.065 to 1.230 */
156     { -1.2219, -0.7730, 1.4148, 1.1016, -0.2054,
157     0.0367, -3.9128, 0.9156, 6.9750, 0.1774,
158     6.4477, -0.1239, -1.5798, -0.5081, -1.7812,
159     0.1080, 0.2624, 0.0672, -0.2190, -0.4285 },
160     /* Sky clearness (epsilon): 1.230 to 1.500 */
161     { -1.1000, -0.2515, 0.8952, 0.0156, 0.2782,
162     -0.1812, - 4.5000, 1.1766, 24.7219, -13.0812,
163     -37.7000, 34.8438, -5.0000, 1.5218, 3.9229,
164     -2.6204, -0.0156, 0.1597, 0.4199, -0.5562 },
165     /* Sky clearness (epsilon): 1.500 to 1.950 */
166     { -0.5484, -0.6654, -0.2672, 0.7117, 0.7234,
167     -0.6219, -5.6812, 2.6297, 33.3389, -18.3000,
168     -62.2500, 52.0781, -3.5000, 0.0016, 1.1477,
169     0.1062, 0.4659, -0.3296, -0.0876, -0.0329 },
170     /* Sky clearness (epsilon): 1.950 to 2.800 */
171     { -0.6000, -0.3566, -2.5000, 2.3250, 0.2937,
172     0.0496, -5.6812, 1.8415, 21.0000, -4.7656 ,
173     -21.5906, 7.2492, -3.5000, -0.1554, 1.4062,
174     0.3988, 0.0032, 0.0766, -0.0656, -0.1294 },
175     /* Sky clearness (epsilon): 2.800 to 4.500 */
176     { -1.0156, -0.3670, 1.0078, 1.4051, 0.2875,
177     -0.5328, -3.8500, 3.3750, 14.0000, -0.9999,
178     -7.1406, 7.5469, -3.4000, -0.1078, -1.0750,
179     1.5702, -0.0672, 0.4016, 0.3017, -0.4844 },
180     /* Sky clearness (epsilon): 4.500 to 6.200 */
181     { -1.0000, 0.0211, 0.5025, -0.5119, -0.3000,
182     0.1922, 0.7023, -1.6317, 19.0000, -5.0000,
183     1.2438, -1.9094, -4.0000, 0.0250, 0.3844,
184     0.2656, 1.0468, -0.3788, -2.4517, 1.4656 },
185     /* Sky clearness (epsilon): 6.200 to ... */
186     { -1.0500, 0.0289, 0.4260, 0.3590, -0.3250,
187     0.1156, 0.7781, 0.0025, 31.0625, -14.5000,
188     -46.1148, 55.3750, -7.2312, 0.4050, 13.3500,
189     0.6234, 1.5000, -0.6426, 1.8564, 0.5636 }
190     };
191    
192     /* Perez irradiance component model coefficients */
193    
194     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
195     /* Stewart. 1990. ìModeling Daylight Availability and */
196     /* Irradiance Components from Direct and Global */
197     /* Irradiance,î Solar Energy 44(5):271-289. */
198    
199     typedef struct
200     {
201     double lower; /* Lower bound */
202     double upper; /* Upper bound */
203     } CategoryBounds;
204    
205     /* Perez sky clearness (epsilon) categories (Table 1) */
206     static const CategoryBounds SkyClearCat[8] =
207     {
208     { 1.000, 1.065 }, /* Overcast */
209     { 1.065, 1.230 },
210     { 1.230, 1.500 },
211     { 1.500, 1.950 },
212     { 1.950, 2.800 },
213     { 2.800, 4.500 },
214     { 4.500, 6.200 },
215 greg 2.12 { 6.200, 12.01 } /* Clear */
216 greg 2.1 };
217    
218     /* Luminous efficacy model coefficients */
219     typedef struct
220     {
221     double a;
222     double b;
223     double c;
224     double d;
225     } ModelCoeff;
226    
227     /* Diffuse luminous efficacy model coefficients (Table 4, Eqn. 7) */
228     static const ModelCoeff DiffuseLumEff[8] =
229     {
230     { 97.24, -0.46, 12.00, -8.91 },
231     { 107.22, 1.15, 0.59, -3.95 },
232     { 104.97, 2.96, -5.53, -8.77 },
233     { 102.39, 5.59, -13.95, -13.90 },
234     { 100.71, 5.94, -22.75, -23.74 },
235     { 106.42, 3.83, -36.15, -28.83 },
236     { 141.88, 1.90, -53.24, -14.03 },
237     { 152.23, 0.35, -45.27, -7.98 }
238     };
239    
240     /* Direct luminous efficacy model coefficients (Table 4, Eqn. 8) */
241     static const ModelCoeff DirectLumEff[8] =
242     {
243     { 57.20, -4.55, -2.98, 117.12 },
244     { 98.99, -3.46, -1.21, 12.38 },
245     { 109.83, -4.90, -1.71, -8.81 },
246     { 110.34, -5.84, -1.99, -4.56 },
247     { 106.36, -3.97, -1.75, -6.16 },
248     { 107.19, -1.25, -1.51, -26.73 },
249     { 105.75, 0.77, -1.26, -34.44 },
250     { 101.18, 1.58, -1.10, -8.29 }
251     };
252    
253 greg 2.3 #ifndef NSUNPATCH
254 greg 2.10 #define NSUNPATCH 4 /* max. # patches to spread sun into */
255 greg 2.3 #endif
256    
257 greg 2.1 extern int jdate(int month, int day);
258     extern double stadj(int jd);
259     extern double sdec(int jd);
260     extern double salt(double sd, double st);
261     extern double sazi(double sd, double st);
262     /* sun calculation constants */
263     extern double s_latitude;
264     extern double s_longitude;
265     extern double s_meridian;
266    
267 greg 2.10 int nsuns = NSUNPATCH; /* number of sun patches to use */
268     double fixed_sun_sa = -1; /* fixed solid angle per sun? */
269    
270 greg 2.1 int verbose = 0; /* progress reports to stderr? */
271    
272     int outfmt = 'a'; /* output format */
273    
274     int rhsubdiv = 1; /* Reinhart sky subdivisions */
275    
276 greg 2.4 COLOR skycolor = {.96, 1.004, 1.118}; /* sky coloration */
277     COLOR suncolor = {1., 1., 1.}; /* sun color */
278     COLOR grefl = {.2, .2, .2}; /* ground reflectance */
279 greg 2.1
280     int nskypatch; /* number of Reinhart patches */
281     float *rh_palt; /* sky patch altitudes (radians) */
282     float *rh_pazi; /* sky patch azimuths (radians) */
283     float *rh_dom; /* sky patch solid angle (sr) */
284    
285     #define vector(v,alt,azi) ( (v)[1] = tcos(alt), \
286     (v)[0] = (v)[1]*tsin(azi), \
287     (v)[1] *= tcos(azi), \
288     (v)[2] = tsin(alt) )
289    
290     #define rh_vector(v,i) vector(v,rh_palt[i],rh_pazi[i])
291    
292     #define rh_cos(i) tsin(rh_palt[i])
293    
294     extern int rh_init(void);
295     extern float * resize_dmatrix(float *mtx_data, int nsteps, int npatch);
296     extern void AddDirect(float *parr);
297    
298 greg 2.14
299     static const char *
300     getfmtname(int fmt)
301     {
302     switch (fmt) {
303     case 'a':
304     return("ascii");
305     case 'f':
306     return("float");
307     case 'd':
308     return("double");
309     }
310     return("unknown");
311     }
312    
313    
314 greg 2.1 int
315     main(int argc, char *argv[])
316     {
317     char buf[256];
318 greg 2.14 int doheader = 1; /* output header? */
319 greg 2.8 double rotation = 0; /* site rotation (degrees) */
320 greg 2.1 double elevation; /* site elevation (meters) */
321     int dir_is_horiz; /* direct is meas. on horizontal? */
322     float *mtx_data = NULL; /* our matrix data */
323     int ntsteps = 0; /* number of rows in matrix */
324 greg 2.16 int step_alloc = 0;
325 greg 2.1 int last_monthly = 0; /* month of last report */
326     int mo, da; /* month (1-12) and day (1-31) */
327     double hr; /* hour (local standard time) */
328     double dir, dif; /* direct and diffuse values */
329     int mtx_offset;
330     int i, j;
331    
332     progname = argv[0];
333     /* get options */
334     for (i = 1; i < argc && argv[i][0] == '-'; i++)
335     switch (argv[i][1]) {
336 greg 2.4 case 'g': /* ground reflectance */
337     grefl[0] = atof(argv[++i]);
338     grefl[1] = atof(argv[++i]);
339     grefl[2] = atof(argv[++i]);
340 greg 2.1 break;
341 greg 2.4 case 'v': /* verbose progress reports */
342 greg 2.1 verbose++;
343     break;
344 greg 2.14 case 'h': /* turn off header */
345     doheader = 0;
346     break;
347 greg 2.4 case 'o': /* output format */
348 greg 2.1 switch (argv[i][2]) {
349     case 'f':
350     case 'd':
351     case 'a':
352     outfmt = argv[i][2];
353     break;
354     default:
355     goto userr;
356     }
357     break;
358 greg 2.11 case 'O': /* output type */
359     switch (argv[i][2]) {
360     case '0':
361     output = 0;
362     break;
363     case '1':
364     output = 1;
365     break;
366     default:
367     goto userr;
368     }
369     if (argv[i][3])
370     goto userr;
371     break;
372 greg 2.4 case 'm': /* Reinhart subdivisions */
373 greg 2.1 rhsubdiv = atoi(argv[++i]);
374     break;
375 greg 2.4 case 'c': /* sky color */
376 greg 2.1 skycolor[0] = atof(argv[++i]);
377     skycolor[1] = atof(argv[++i]);
378     skycolor[2] = atof(argv[++i]);
379     break;
380 greg 2.4 case 'd': /* solar (direct) only */
381 greg 2.1 skycolor[0] = skycolor[1] = skycolor[2] = 0;
382 greg 2.4 if (suncolor[1] <= 1e-4)
383     suncolor[0] = suncolor[1] = suncolor[2] = 1;
384 greg 2.1 break;
385 greg 2.4 case 's': /* sky only (no direct) */
386     suncolor[0] = suncolor[1] = suncolor[2] = 0;
387 greg 2.1 if (skycolor[1] <= 1e-4)
388     skycolor[0] = skycolor[1] = skycolor[2] = 1;
389     break;
390 greg 2.8 case 'r': /* rotate distribution */
391     if (argv[i][2] && argv[i][2] != 'z')
392     goto userr;
393     rotation = atof(argv[++i]);
394     break;
395 greg 2.10 case '5': /* 5-phase calculation */
396     nsuns = 1;
397 greg 2.19 fixed_sun_sa = PI/360.*atof(argv[++i]);
398 greg 2.21 if (fixed_sun_sa <= 0) {
399     fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
400     argv[0]);
401     exit(1);
402     }
403 greg 2.19 fixed_sun_sa *= fixed_sun_sa*PI;
404 greg 2.10 break;
405 greg 2.1 default:
406     goto userr;
407     }
408     if (i < argc-1)
409     goto userr;
410     if (i == argc-1 && freopen(argv[i], "r", stdin) == NULL) {
411     fprintf(stderr, "%s: cannot open '%s' for input\n",
412     progname, argv[i]);
413     exit(1);
414     }
415     if (verbose) {
416     if (i == argc-1)
417     fprintf(stderr, "%s: reading weather tape '%s'\n",
418     progname, argv[i]);
419     else
420     fprintf(stderr, "%s: reading weather tape from <stdin>\n",
421     progname);
422     }
423     /* read weather tape header */
424 greg 2.2 if (scanf("place %[^\r\n] ", buf) != 1)
425 greg 2.1 goto fmterr;
426     if (scanf("latitude %lf\n", &s_latitude) != 1)
427     goto fmterr;
428     if (scanf("longitude %lf\n", &s_longitude) != 1)
429     goto fmterr;
430     if (scanf("time_zone %lf\n", &s_meridian) != 1)
431     goto fmterr;
432     if (scanf("site_elevation %lf\n", &elevation) != 1)
433     goto fmterr;
434     if (scanf("weather_data_file_units %d\n", &input) != 1)
435     goto fmterr;
436     switch (input) { /* translate units */
437     case 1:
438     input = 1; /* radiometric quantities */
439     dir_is_horiz = 0; /* direct is perpendicular meas. */
440     break;
441     case 2:
442     input = 1; /* radiometric quantities */
443     dir_is_horiz = 1; /* solar measured horizontally */
444     break;
445     case 3:
446     input = 2; /* photometric quantities */
447     dir_is_horiz = 0; /* direct is perpendicular meas. */
448     break;
449     default:
450     goto fmterr;
451     }
452     rh_init(); /* initialize sky patches */
453     if (verbose) {
454     fprintf(stderr, "%s: location '%s'\n", progname, buf);
455     fprintf(stderr, "%s: (lat,long)=(%.1f,%.1f) degrees north, west\n",
456     progname, s_latitude, s_longitude);
457     fprintf(stderr, "%s: %d sky patches per time step\n",
458     progname, nskypatch);
459 greg 2.8 if (rotation != 0)
460     fprintf(stderr, "%s: rotating output %.0f degrees\n",
461     progname, rotation);
462 greg 2.1 }
463 greg 2.2 /* convert quantities to radians */
464     s_latitude = DegToRad(s_latitude);
465     s_longitude = DegToRad(s_longitude);
466     s_meridian = DegToRad(s_meridian);
467 greg 2.1 /* process each time step in tape */
468     while (scanf("%d %d %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif) == 5) {
469     double sda, sta;
470     /* make space for next time step */
471     mtx_offset = 3*nskypatch*ntsteps++;
472 greg 2.15 if (ntsteps > step_alloc) {
473 greg 2.16 step_alloc += (step_alloc>>1) + ntsteps + 7;
474 greg 2.15 mtx_data = resize_dmatrix(mtx_data, step_alloc, nskypatch);
475     }
476 greg 2.1 if (dif <= 1e-4) {
477     memset(mtx_data+mtx_offset, 0, sizeof(float)*3*nskypatch);
478     continue;
479     }
480     if (verbose && mo != last_monthly)
481     fprintf(stderr, "%s: stepping through month %d...\n",
482     progname, last_monthly=mo);
483     /* compute solar position */
484     julian_date = jdate(mo, da);
485     sda = sdec(julian_date);
486     sta = stadj(julian_date);
487     altitude = salt(sda, hr+sta);
488 greg 2.8 azimuth = sazi(sda, hr+sta) + PI - DegToRad(rotation);
489 greg 2.1 /* convert measured values */
490     if (dir_is_horiz && altitude > 0.)
491     dir /= sin(altitude);
492     if (input == 1) {
493     dir_irrad = dir;
494     diff_irrad = dif;
495     } else /* input == 2 */ {
496     dir_illum = dir;
497     diff_illum = dif;
498     }
499     /* compute sky patch values */
500     ComputeSky(mtx_data+mtx_offset);
501 greg 2.4 AddDirect(mtx_data+mtx_offset);
502 greg 2.1 }
503     /* check for junk at end */
504     while ((i = fgetc(stdin)) != EOF)
505     if (!isspace(i)) {
506     fprintf(stderr, "%s: warning - unexpected data past EOT: ",
507     progname);
508     buf[0] = i; buf[1] = '\0';
509     fgets(buf+1, sizeof(buf)-1, stdin);
510     fputs(buf, stderr); fputc('\n', stderr);
511     break;
512     }
513     /* write out matrix */
514 greg 2.14 if (outfmt != 'a')
515     SET_FILE_BINARY(stdout);
516 greg 2.1 #ifdef getc_unlocked
517     flockfile(stdout);
518     #endif
519     if (verbose)
520     fprintf(stderr, "%s: writing %smatrix with %d time steps...\n",
521     progname, outfmt=='a' ? "" : "binary ", ntsteps);
522 greg 2.14 if (doheader) {
523     newheader("RADIANCE", stdout);
524     printargs(argc, argv, stdout);
525     printf("LATLONG= %.8f %.8f\n", RadToDeg(s_latitude),
526     -RadToDeg(s_longitude));
527     printf("NROWS=%d\n", nskypatch);
528     printf("NCOLS=%d\n", ntsteps);
529     printf("NCOMP=3\n");
530 greg 2.18 fputformat((char *)getfmtname(outfmt), stdout);
531 greg 2.14 putchar('\n');
532     }
533 greg 2.1 /* patches are rows (outer sort) */
534     for (i = 0; i < nskypatch; i++) {
535     mtx_offset = 3*i;
536     switch (outfmt) {
537     case 'a':
538     for (j = 0; j < ntsteps; j++) {
539 greg 2.3 printf("%.3g %.3g %.3g\n", mtx_data[mtx_offset],
540 greg 2.1 mtx_data[mtx_offset+1],
541     mtx_data[mtx_offset+2]);
542     mtx_offset += 3*nskypatch;
543     }
544 greg 2.2 if (ntsteps > 1)
545     fputc('\n', stdout);
546 greg 2.1 break;
547     case 'f':
548     for (j = 0; j < ntsteps; j++) {
549     fwrite(mtx_data+mtx_offset, sizeof(float), 3,
550     stdout);
551     mtx_offset += 3*nskypatch;
552     }
553     break;
554     case 'd':
555     for (j = 0; j < ntsteps; j++) {
556     double ment[3];
557     ment[0] = mtx_data[mtx_offset];
558     ment[1] = mtx_data[mtx_offset+1];
559     ment[2] = mtx_data[mtx_offset+2];
560     fwrite(ment, sizeof(double), 3, stdout);
561     mtx_offset += 3*nskypatch;
562     }
563     break;
564     }
565     if (ferror(stdout))
566     goto writerr;
567     }
568     if (fflush(stdout) == EOF)
569     goto writerr;
570     if (verbose)
571     fprintf(stderr, "%s: done.\n", progname);
572     exit(0);
573     userr:
574 greg 2.14 fprintf(stderr, "Usage: %s [-v][-h][-d|-s][-r deg][-m N][-g r g b][-c r g b][-o{f|d}][-O{0|1}] [tape.wea]\n",
575 greg 2.1 progname);
576     exit(1);
577     fmterr:
578     fprintf(stderr, "%s: input weather tape format error\n", progname);
579     exit(1);
580     writerr:
581     fprintf(stderr, "%s: write error on output\n", progname);
582     exit(1);
583     }
584    
585     /* Return maximum of two doubles */
586     double dmax( double a, double b )
587     { return (a > b) ? a : b; }
588    
589     /* Compute sky patch radiance values (modified by GW) */
590     void
591     ComputeSky(float *parr)
592     {
593     int index; /* Category index */
594     double norm_diff_illum; /* Normalized diffuse illuimnance */
595     int i;
596    
597     /* Calculate atmospheric precipitable water content */
598     apwc = CalcPrecipWater(dew_point);
599    
600 greg 2.6 /* Calculate sun zenith angle (don't let it dip below horizon) */
601     /* Also limit minimum angle to keep circumsolar off zenith */
602     if (altitude <= 0.0)
603     sun_zenith = DegToRad(90.0);
604     else if (altitude >= DegToRad(87.0))
605     sun_zenith = DegToRad(3.0);
606     else
607     sun_zenith = DegToRad(90.0) - altitude;
608 greg 2.1
609     /* Compute the inputs for the calculation of the sky distribution */
610    
611     if (input == 0) /* XXX never used */
612     {
613     /* Calculate irradiance */
614     diff_irrad = CalcDiffuseIrradiance();
615     dir_irrad = CalcDirectIrradiance();
616    
617     /* Calculate illuminance */
618     index = GetCategoryIndex();
619     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
620     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
621     }
622     else if (input == 1)
623     {
624     sky_brightness = CalcSkyBrightness();
625     sky_clearness = CalcSkyClearness();
626    
627 greg 2.9 /* Limit sky clearness */
628     if (sky_clearness > 11.9)
629     sky_clearness = 11.9;
630    
631     /* Limit sky brightness */
632     if (sky_brightness < 0.01)
633 greg 2.11 sky_brightness = 0.01;
634 greg 2.9
635 greg 2.1 /* Calculate illuminance */
636     index = GetCategoryIndex();
637     diff_illum = diff_irrad * CalcDiffuseIllumRatio(index);
638     dir_illum = dir_irrad * CalcDirectIllumRatio(index);
639     }
640     else if (input == 2)
641     {
642     /* Calculate sky brightness and clearness from illuminance values */
643     index = CalcSkyParamFromIllum();
644     }
645    
646 greg 2.11 if (output == 1) { /* hack for solar radiance */
647     diff_illum = diff_irrad * WHTEFFICACY;
648     dir_illum = dir_irrad * WHTEFFICACY;
649     }
650    
651 greg 2.2 if (bright(skycolor) <= 1e-4) { /* 0 sky component? */
652     memset(parr, 0, sizeof(float)*3*nskypatch);
653     return;
654     }
655 greg 2.1 /* Compute ground radiance (include solar contribution if any) */
656 greg 2.3 parr[0] = diff_illum;
657 greg 2.1 if (altitude > 0)
658 greg 2.3 parr[0] += dir_illum * sin(altitude);
659 greg 2.4 parr[2] = parr[1] = parr[0] *= (1./PI/WHTEFFICACY);
660     multcolor(parr, grefl);
661 greg 2.1
662     /* Calculate Perez sky model parameters */
663     CalcPerezParam(sun_zenith, sky_clearness, sky_brightness, index);
664    
665     /* Calculate sky patch luminance values */
666     CalcSkyPatchLumin(parr);
667    
668     /* Calculate relative horizontal illuminance */
669     norm_diff_illum = CalcRelHorzIllum(parr);
670    
671 greg 2.13 /* Check for zero sky -- make uniform in that case */
672     if (norm_diff_illum <= FTINY) {
673     for (i = 1; i < nskypatch; i++)
674     setcolor(parr+3*i, 1., 1., 1.);
675     norm_diff_illum = PI;
676     }
677 greg 2.1 /* Normalization coefficient */
678     norm_diff_illum = diff_illum / norm_diff_illum;
679    
680     /* Apply to sky patches to get absolute radiance values */
681     for (i = 1; i < nskypatch; i++) {
682 greg 2.7 scalecolor(parr+3*i, norm_diff_illum*(1./WHTEFFICACY));
683 greg 2.1 multcolor(parr+3*i, skycolor);
684     }
685     }
686    
687     /* Add in solar direct to nearest sky patches (GW) */
688     void
689     AddDirect(float *parr)
690     {
691     FVECT svec;
692 greg 2.3 double near_dprod[NSUNPATCH];
693     int near_patch[NSUNPATCH];
694     double wta[NSUNPATCH], wtot;
695 greg 2.1 int i, j, p;
696    
697 greg 2.4 if (dir_illum <= 1e-4 || bright(suncolor) <= 1e-4)
698 greg 2.1 return;
699 greg 2.10 /* identify nsuns closest patches */
700     if (nsuns > NSUNPATCH)
701     nsuns = NSUNPATCH;
702     else if (nsuns <= 0)
703     nsuns = 1;
704     for (i = nsuns; i--; )
705 greg 2.1 near_dprod[i] = -1.;
706     vector(svec, altitude, azimuth);
707     for (p = 1; p < nskypatch; p++) {
708     FVECT pvec;
709     double dprod;
710     rh_vector(pvec, p);
711     dprod = DOT(pvec, svec);
712 greg 2.10 for (i = 0; i < nsuns; i++)
713 greg 2.1 if (dprod > near_dprod[i]) {
714 greg 2.10 for (j = nsuns; --j > i; ) {
715 greg 2.1 near_dprod[j] = near_dprod[j-1];
716     near_patch[j] = near_patch[j-1];
717     }
718     near_dprod[i] = dprod;
719     near_patch[i] = p;
720     break;
721     }
722     }
723     wtot = 0; /* weight by proximity */
724 greg 2.10 for (i = nsuns; i--; )
725 greg 2.1 wtot += wta[i] = 1./(1.002 - near_dprod[i]);
726     /* add to nearest patch radiances */
727 greg 2.10 for (i = nsuns; i--; ) {
728 greg 2.2 float *pdest = parr + 3*near_patch[i];
729 greg 2.10 float val_add = wta[i] * dir_illum / (WHTEFFICACY * wtot);
730    
731     val_add /= (fixed_sun_sa > 0) ? fixed_sun_sa
732     : rh_dom[near_patch[i]] ;
733 greg 2.4 *pdest++ += val_add*suncolor[0];
734     *pdest++ += val_add*suncolor[1];
735     *pdest++ += val_add*suncolor[2];
736 greg 2.2 }
737 greg 2.1 }
738    
739     /* Initialize Reinhart sky patch positions (GW) */
740     int
741     rh_init(void)
742     {
743     #define NROW 7
744     static const int tnaz[NROW] = {30, 30, 24, 24, 18, 12, 6};
745     const double alpha = (PI/2.)/(NROW*rhsubdiv + .5);
746     int p, i, j;
747     /* allocate patch angle arrays */
748     nskypatch = 0;
749     for (p = 0; p < NROW; p++)
750     nskypatch += tnaz[p];
751     nskypatch *= rhsubdiv*rhsubdiv;
752     nskypatch += 2;
753     rh_palt = (float *)malloc(sizeof(float)*nskypatch);
754     rh_pazi = (float *)malloc(sizeof(float)*nskypatch);
755     rh_dom = (float *)malloc(sizeof(float)*nskypatch);
756     if ((rh_palt == NULL) | (rh_pazi == NULL) | (rh_dom == NULL)) {
757     fprintf(stderr, "%s: out of memory in rh_init()\n", progname);
758     exit(1);
759     }
760     rh_palt[0] = -PI/2.; /* ground & zenith patches */
761     rh_pazi[0] = 0.;
762     rh_dom[0] = 2.*PI;
763     rh_palt[nskypatch-1] = PI/2.;
764     rh_pazi[nskypatch-1] = 0.;
765     rh_dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
766     p = 1; /* "normal" patches */
767     for (i = 0; i < NROW*rhsubdiv; i++) {
768     const float ralt = alpha*(i + .5);
769     const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
770 greg 2.3 const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
771     (double)ninrow;
772 greg 2.1 for (j = 0; j < ninrow; j++) {
773     rh_palt[p] = ralt;
774     rh_pazi[p] = 2.*PI * j / (double)ninrow;
775     rh_dom[p++] = dom;
776     }
777     }
778     return nskypatch;
779     #undef NROW
780     }
781    
782     /* Resize daylight matrix (GW) */
783     float *
784     resize_dmatrix(float *mtx_data, int nsteps, int npatch)
785     {
786     if (mtx_data == NULL)
787     mtx_data = (float *)malloc(sizeof(float)*3*nsteps*npatch);
788     else
789     mtx_data = (float *)realloc(mtx_data,
790     sizeof(float)*3*nsteps*npatch);
791     if (mtx_data == NULL) {
792     fprintf(stderr, "%s: out of memory in resize_dmatrix(%d,%d)\n",
793     progname, nsteps, npatch);
794     exit(1);
795     }
796     return(mtx_data);
797     }
798    
799     /* Determine category index */
800     int GetCategoryIndex()
801     {
802     int index; /* Loop index */
803    
804     for (index = 0; index < 8; index++)
805     if ((sky_clearness >= SkyClearCat[index].lower) &&
806     (sky_clearness < SkyClearCat[index].upper))
807     break;
808    
809     return index;
810     }
811    
812     /* Calculate diffuse illuminance to diffuse irradiance ratio */
813    
814     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
815     /* Stewart. 1990. ìModeling Daylight Availability and */
816     /* Irradiance Components from Direct and Global */
817     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 7. */
818    
819     double CalcDiffuseIllumRatio( int index )
820     {
821     ModelCoeff const *pnle; /* Category coefficient pointer */
822    
823     /* Get category coefficient pointer */
824     pnle = &(DiffuseLumEff[index]);
825    
826     return pnle->a + pnle->b * apwc + pnle->c * cos(sun_zenith) +
827     pnle->d * log(sky_brightness);
828     }
829    
830     /* Calculate direct illuminance to direct irradiance ratio */
831    
832     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
833     /* Stewart. 1990. ìModeling Daylight Availability and */
834     /* Irradiance Components from Direct and Global */
835     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 8. */
836    
837     double CalcDirectIllumRatio( int index )
838     {
839     ModelCoeff const *pnle; /* Category coefficient pointer */
840    
841     /* Get category coefficient pointer */
842     pnle = &(DirectLumEff[index]);
843    
844     /* Calculate direct illuminance from direct irradiance */
845    
846     return dmax((pnle->a + pnle->b * apwc + pnle->c * exp(5.73 *
847     sun_zenith - 5.0) + pnle->d * sky_brightness),
848     0.0);
849     }
850    
851     /* Calculate sky brightness */
852    
853     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
854     /* Stewart. 1990. ìModeling Daylight Availability and */
855     /* Irradiance Components from Direct and Global */
856     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2. */
857    
858     double CalcSkyBrightness()
859     {
860     return diff_irrad * CalcAirMass() / (DC_SolarConstantE *
861     CalcEccentricity());
862     }
863    
864     /* Calculate sky clearness */
865    
866     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
867     /* Stewart. 1990. ìModeling Daylight Availability and */
868     /* Irradiance Components from Direct and Global */
869     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1. */
870    
871     double CalcSkyClearness()
872     {
873     double sz_cubed; /* Sun zenith angle cubed */
874    
875     /* Calculate sun zenith angle cubed */
876 greg 2.11 sz_cubed = sun_zenith*sun_zenith*sun_zenith;
877 greg 2.1
878     return ((diff_irrad + dir_irrad) / diff_irrad + 1.041 *
879     sz_cubed) / (1.0 + 1.041 * sz_cubed);
880     }
881    
882     /* Calculate diffuse horizontal irradiance from Perez sky brightness */
883    
884     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
885     /* Stewart. 1990. ìModeling Daylight Availability and */
886     /* Irradiance Components from Direct and Global */
887     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 2 */
888     /* (inverse). */
889    
890     double CalcDiffuseIrradiance()
891     {
892     return sky_brightness * DC_SolarConstantE * CalcEccentricity() /
893     CalcAirMass();
894     }
895    
896     /* Calculate direct normal irradiance from Perez sky clearness */
897    
898     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
899     /* Stewart. 1990. ìModeling Daylight Availability and */
900     /* Irradiance Components from Direct and Global */
901     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 1 */
902     /* (inverse). */
903    
904     double CalcDirectIrradiance()
905     {
906     return CalcDiffuseIrradiance() * ((sky_clearness - 1.0) * (1 + 1.041
907 greg 2.11 * sun_zenith*sun_zenith*sun_zenith));
908 greg 2.1 }
909    
910     /* Calculate sky brightness and clearness from illuminance values */
911     int CalcSkyParamFromIllum()
912     {
913     double test1 = 0.1;
914     double test2 = 0.1;
915     int counter = 0;
916     int index = 0; /* Category index */
917    
918     /* Convert illuminance to irradiance */
919     diff_irrad = diff_illum * DC_SolarConstantE /
920     (DC_SolarConstantL * 1000.0);
921     dir_irrad = dir_illum * DC_SolarConstantE /
922     (DC_SolarConstantL * 1000.0);
923    
924     /* Calculate sky brightness and clearness */
925     sky_brightness = CalcSkyBrightness();
926     sky_clearness = CalcSkyClearness();
927    
928     /* Limit sky clearness */
929     if (sky_clearness > 12.0)
930     sky_clearness = 12.0;
931    
932     /* Limit sky brightness */
933 greg 2.9 if (sky_brightness < 0.01)
934 greg 2.1 sky_brightness = 0.01;
935    
936     while (((fabs(diff_irrad - test1) > 10.0) ||
937     (fabs(dir_irrad - test2) > 10.0)) && !(counter == 5))
938     {
939     test1 = diff_irrad;
940     test2 = dir_irrad;
941     counter++;
942    
943     /* Convert illuminance to irradiance */
944     index = GetCategoryIndex();
945     diff_irrad = diff_illum / CalcDiffuseIllumRatio(index);
946     dir_irrad = dir_illum / CalcDirectIllumRatio(index);
947    
948     /* Calculate sky brightness and clearness */
949     sky_brightness = CalcSkyBrightness();
950     sky_clearness = CalcSkyClearness();
951    
952     /* Limit sky clearness */
953     if (sky_clearness > 12.0)
954     sky_clearness = 12.0;
955    
956     /* Limit sky brightness */
957 greg 2.9 if (sky_brightness < 0.01)
958 greg 2.1 sky_brightness = 0.01;
959     }
960    
961     return GetCategoryIndex();
962     }
963    
964     /* Calculate relative luminance */
965    
966     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
967     /* ìAll-Weather Model for Sky Luminance Distribution - */
968     /* Preliminary Configuration and Validation,î Solar Energy */
969     /* 50(3):235-245, Eqn. 1. */
970    
971     double CalcRelLuminance( double gamma, double zeta )
972     {
973     return (1.0 + perez_param[0] * exp(perez_param[1] / cos(zeta))) *
974     (1.0 + perez_param[2] * exp(perez_param[3] * gamma) +
975     perez_param[4] * cos(gamma) * cos(gamma));
976     }
977    
978     /* Calculate Perez sky model parameters */
979    
980     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
981     /* ìAll-Weather Model for Sky Luminance Distribution - */
982     /* Preliminary Configuration and Validation,î Solar Energy */
983     /* 50(3):235-245, Eqns. 6 - 8. */
984    
985     void CalcPerezParam( double sz, double epsilon, double delta,
986     int index )
987     {
988     double x[5][4]; /* Coefficents a, b, c, d, e */
989     int i, j; /* Loop indices */
990    
991     /* Limit sky brightness */
992     if (epsilon > 1.065 && epsilon < 2.8)
993     {
994     if (delta < 0.2)
995     delta = 0.2;
996     }
997    
998     /* Get Perez coefficients */
999     for (i = 0; i < 5; i++)
1000     for (j = 0; j < 4; j++)
1001     x[i][j] = PerezCoeff[index][4 * i + j];
1002    
1003     if (index != 0)
1004     {
1005     /* Calculate parameter a, b, c, d and e (Eqn. 6) */
1006     for (i = 0; i < 5; i++)
1007     perez_param[i] = x[i][0] + x[i][1] * sz + delta * (x[i][2] +
1008     x[i][3] * sz);
1009     }
1010     else
1011     {
1012     /* Parameters a, b and e (Eqn. 6) */
1013     perez_param[0] = x[0][0] + x[0][1] * sz + delta * (x[0][2] +
1014     x[0][3] * sz);
1015     perez_param[1] = x[1][0] + x[1][1] * sz + delta * (x[1][2] +
1016     x[1][3] * sz);
1017     perez_param[4] = x[4][0] + x[4][1] * sz + delta * (x[4][2] +
1018     x[4][3] * sz);
1019    
1020     /* Parameter c (Eqn. 7) */
1021     perez_param[2] = exp(pow(delta * (x[2][0] + x[2][1] * sz),
1022     x[2][2])) - x[2][3];
1023    
1024     /* Parameter d (Eqn. 8) */
1025     perez_param[3] = -exp(delta * (x[3][0] + x[3][1] * sz)) +
1026     x[3][2] + delta * x[3][3];
1027     }
1028     }
1029    
1030     /* Calculate relative horizontal illuminance (modified by GW) */
1031    
1032     /* Reference: Perez, R., R. Seals, and J. Michalsky. 1993. */
1033     /* ìAll-Weather Model for Sky Luminance Distribution - */
1034     /* Preliminary Configuration and Validation,î Solar Energy */
1035     /* 50(3):235-245, Eqn. 3. */
1036    
1037     double CalcRelHorzIllum( float *parr )
1038     {
1039     int i;
1040     double rh_illum = 0.0; /* Relative horizontal illuminance */
1041    
1042     for (i = 1; i < nskypatch; i++)
1043 greg 2.7 rh_illum += parr[3*i+1] * rh_cos(i) * rh_dom[i];
1044 greg 2.1
1045 greg 2.7 return rh_illum;
1046 greg 2.1 }
1047    
1048     /* Calculate earth orbit eccentricity correction factor */
1049    
1050     /* Reference: Sen, Z. 2008. Solar Energy Fundamental and Modeling */
1051     /* Techniques. Springer, p. 72. */
1052    
1053     double CalcEccentricity()
1054     {
1055     double day_angle; /* Day angle (radians) */
1056     double E0; /* Eccentricity */
1057    
1058     /* Calculate day angle */
1059     day_angle = (julian_date - 1.0) * (2.0 * PI / 365.0);
1060    
1061     /* Calculate eccentricity */
1062     E0 = 1.00011 + 0.034221 * cos(day_angle) + 0.00128 * sin(day_angle)
1063     + 0.000719 * cos(2.0 * day_angle) + 0.000077 * sin(2.0 *
1064     day_angle);
1065    
1066     return E0;
1067     }
1068    
1069     /* Calculate atmospheric precipitable water content */
1070    
1071     /* Reference: Perez, R., P. Ineichen, R. Seals, J. Michalsky, and R. */
1072     /* Stewart. 1990. ìModeling Daylight Availability and */
1073     /* Irradiance Components from Direct and Global */
1074     /* Irradiance,î Solar Energy 44(5):271-289, Eqn. 3. */
1075    
1076     /* Note: The default surface dew point temperature is 11 deg. C */
1077     /* (52 deg. F). Typical values are: */
1078    
1079     /* Celsius Fahrenheit Human Perception */
1080     /* > 24 > 75 Extremely uncomfortable */
1081     /* 21 - 24 70 - 74 Very humid */
1082     /* 18 - 21 65 - 69 Somewhat uncomfortable */
1083     /* 16 - 18 60 - 64 OK for most people */
1084     /* 13 - 16 55 - 59 Comfortable */
1085     /* 10 - 12 50 - 54 Very comfortable */
1086     /* < 10 < 49 A bit dry for some */
1087    
1088     double CalcPrecipWater( double dpt )
1089     { return exp(0.07 * dpt - 0.075); }
1090    
1091     /* Calculate relative air mass */
1092    
1093     /* Reference: Kasten, F. 1966. "A New Table and Approximation Formula */
1094     /* for the Relative Optical Air Mass," Arch. Meteorol. */
1095     /* Geophys. Bioklimataol. Ser. B14, pp. 206-233. */
1096    
1097     /* Note: More sophisticated relative air mass models are */
1098     /* available, but they differ significantly only for */
1099     /* sun zenith angles greater than 80 degrees. */
1100    
1101     double CalcAirMass()
1102     {
1103     return (1.0 / (cos(sun_zenith) + 0.15 * pow(93.885 -
1104     RadToDeg(sun_zenith), -1.253)));
1105     }
1106    
1107     /* Calculate Perez All-Weather sky patch luminances (modified by GW) */
1108    
1109     /* NOTE: The sky patches centers are determined in accordance with the */
1110     /* BRE-IDMP sky luminance measurement procedures. (See for example */
1111     /* Mardaljevic, J. 2001. "The BRE-IDMP Dataset: A New Benchmark */
1112     /* for the Validation of Illuminance Prediction Techniques," */
1113     /* Lighting Research & Technology 33(2):117-136.) */
1114    
1115     void CalcSkyPatchLumin( float *parr )
1116     {
1117     int i;
1118     double aas; /* Sun-sky point azimuthal angle */
1119     double sspa; /* Sun-sky point angle */
1120     double zsa; /* Zenithal sun angle */
1121    
1122     for (i = 1; i < nskypatch; i++)
1123     {
1124     /* Calculate sun-sky point azimuthal angle */
1125     aas = fabs(rh_pazi[i] - azimuth);
1126    
1127     /* Calculate zenithal sun angle */
1128     zsa = PI * 0.5 - rh_palt[i];
1129    
1130     /* Calculate sun-sky point angle (Equation 8-20) */
1131     sspa = acos(cos(sun_zenith) * cos(zsa) + sin(sun_zenith) *
1132     sin(zsa) * cos(aas));
1133    
1134     /* Calculate patch luminance */
1135     parr[3*i] = CalcRelLuminance(sspa, zsa);
1136     if (parr[3*i] < 0) parr[3*i] = 0;
1137     parr[3*i+2] = parr[3*i+1] = parr[3*i];
1138     }
1139     }