ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/gen/gendaylit.c
Revision: 2.9
Committed: Wed Jan 30 01:02:42 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.8: +281 -368 lines
Log Message:
Replaced gendaylit with new version by Wendelin Sprenger and Jan Wienold

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.9 static const char RCSid[] = "$Id$";
3 greg 2.1 #endif
4 greg 2.9 /* Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems
5     * Heidenhofstr. 2, D-79110 Freiburg, Germany
6 greg 2.1 * *Agence de l'Environnement et de la Maitrise de l'Energie
7     * Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
8     * *BOUYGUES
9     * 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
10 greg 2.9 *
11     * 24.1.2006 some adjustments for cygwin compilation, inclusion of RADIANCE3.7 libraries, by J. Wienold
12     * 2011/10/08 [email protected]:
13     * - integrated coeff_perez.dat and defangles.dat
14     * - avoid some segfaults caused by out of range parameters and
15     * - numerically dangerous range checks
16 greg 2.1 */
17    
18     /*
19     * gendaylit.c program to generate the angular distribution of the daylight.
20     * Our zenith is along the Z-axis, the X-axis
21     * points east, and the Y-axis points north.
22     */
23    
24     #include <stdio.h>
25     #include <string.h>
26     #include <math.h>
27     #include <stdlib.h>
28    
29     #include "color.h"
30     #include "paths.h"
31    
32 greg 2.9 #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
33 greg 2.1
34     double normsc();
35    
36 greg 2.9 /*static char *rcsid="$Header: /tmp_mnt/nfs/koll7/users/koll/jean/program/radiance/RAD/RCS/gendaylit.c,v 1.13 94/05/17 19:21:01 jean Exp Locker: jean $";*/
37    
38     float coeff_perez[] = {
39     1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,
40     -1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,
41     -1.1000,-0.2515,0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,-2.6204,-0.0156,0.1597,0.4199,-0.5562,
42     -0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,
43     -0.6000,-0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,
44     -1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,
45     -1.0000,0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,0.2656,1.0468,-0.3788,-2.4517,1.4656,
46     -1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,-14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
47    
48    
49     float defangle_theta[] = {84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
50    
51     float defangle_phi[] = {0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
52 greg 2.1
53    
54    
55     /* Perez sky parametrization : epsilon and delta calculations from the direct and diffuse irradiances */
56     double sky_brightness();
57     double sky_clearness();
58    
59     /* calculation of the direct and diffuse components from the Perez parametrization */
60 greg 2.9 double diffuse_irradiance_from_sky_brightness();
61 greg 2.1 double direct_irradiance_from_sky_clearness();
62    
63    
64     /* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
65     double glob_h_effi_PEREZ();
66     double glob_h_diffuse_effi_PEREZ();
67     double direct_n_effi_PEREZ();
68     /*likelihood check of the epsilon, delta, direct and diffuse components*/
69     void check_parametrization();
70     void check_irradiances();
71     void check_illuminances();
72     void illu_to_irra_index();
73 greg 2.9 void print_error_sky();
74 greg 2.1
75    
76     /* Perez sky luminance model */
77     double calc_rel_lum_perez(double dzeta,double gamma,double Z,
78 greg 2.9 double epsilon,double Delta,float coeff_perez[]);
79 greg 2.1 /* coefficients for the sky luminance perez model */
80 greg 2.9 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]);
81 greg 2.1 double radians(double degres);
82     double degres(double radians);
83     void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z);
84     double integ_lv(float *lv,float *theta);
85    
86 greg 2.9 void printdefaults();
87     void computesky();
88     void printhead(int ac, char** av);
89     void userror(char* msg);
90     void printsky();
91 greg 2.1
92 greg 2.9 FILE * frlibopen(char* fname);
93 greg 2.1
94     /* astronomy and geometry*/
95     double get_eccentricity();
96     double air_mass();
97    
98 greg 2.9 extern int jdate(int month, int day);
99     extern double stadj(int jd);
100     extern double sdec(int jd);
101     extern double salt(double sd, double st);
102     extern double sazi(double sd, double st);
103 greg 2.1
104    
105     /* sun calculation constants */
106     extern double s_latitude;
107     extern double s_longitude;
108     extern double s_meridian;
109    
110     const double AU = 149597890E3;
111     const double solar_constant_e = 1367; /* solar constant W/m^2 */
112     const double solar_constant_l = 127.5; /* solar constant klux */
113    
114     const double half_sun_angle = 0.2665;
115     const double half_direct_angle = 2.85;
116    
117     const double skyclearinf = 1.000; /* limitations for the variation of the Perez parameters */
118     const double skyclearsup = 12.1;
119     const double skybriginf = 0.01;
120     const double skybrigsup = 0.6;
121    
122    
123    
124     /* required values */
125     int month, day; /* date */
126     double hour; /* time */
127     int tsolar; /* 0=standard, 1=solar */
128     double altitude, azimuth; /* or solar angles */
129    
130    
131    
132     /* definition of the sky conditions through the Perez parametrization */
133 greg 2.9 double skyclearness = 0;
134     double skybrightness = 0;
135 greg 2.1 double solarradiance; /*radiance of the sun disk and of the circumsolar area*/
136 greg 2.9 double diffuseilluminance, directilluminance, diffuseirradiance, directirradiance;
137 greg 2.1 double sunzenith, daynumber=150, atm_preci_water=2;
138    
139 greg 2.9 double sunaltitude_border = 0;
140     double diffnormalization = 0;
141     double dirnormalization = 0;
142 greg 2.1 double *c_perez;
143    
144     int output=0; /*define the unit of the output (sky luminance or radiance): visible watt=0, solar watt=1, lumen=2*/
145     int input=0; /*define the input for the calulation*/
146    
147 greg 2.9 int suppress_warnings=0;
148    
149 greg 2.1 /* default values */
150     int cloudy = 0; /* 1=standard, 2=uniform */
151     int dosun = 1;
152     double zenithbr = -1.0;
153     double betaturbidity = 0.1;
154     double gprefl = 0.2;
155     int S_INTER=0;
156    
157     /* computed values */
158     double sundir[3];
159 greg 2.9 double groundbr = 0;
160 greg 2.1 double F2;
161     double solarbr = 0.0;
162     int u_solar = 0; /* -1=irradiance, 1=radiance */
163    
164     char *progname;
165     char errmsg[128];
166    
167    
168 greg 2.9 int main(int argc, char** argv)
169 greg 2.1 {
170     int i;
171    
172     progname = argv[0];
173     if (argc == 2 && !strcmp(argv[1], "-defaults")) {
174     printdefaults();
175 greg 2.9 return 0;
176 greg 2.1 }
177     if (argc < 4)
178     userror("arg count");
179     if (!strcmp(argv[1], "-ang")) {
180 greg 2.9 altitude = atof(argv[2]) * (M_PI/180);
181     azimuth = atof(argv[3]) * (M_PI/180);
182 greg 2.1 month = 0;
183     } else {
184     month = atoi(argv[1]);
185     if (month < 1 || month > 12)
186     userror("bad month");
187     day = atoi(argv[2]);
188     if (day < 1 || day > 31)
189     userror("bad day");
190     hour = atof(argv[3]);
191     if (hour < 0 || hour >= 24)
192     userror("bad hour");
193     tsolar = argv[3][0] == '+';
194     }
195     for (i = 4; i < argc; i++)
196     if (argv[i][0] == '-' || argv[i][0] == '+')
197     switch (argv[i][1]) {
198     case 's':
199     cloudy = 0;
200     dosun = argv[i][0] == '+';
201     break;
202     case 'r':
203     case 'R':
204     u_solar = argv[i][1] == 'R' ? -1 : 1;
205     solarbr = atof(argv[++i]);
206     break;
207     case 'c':
208     cloudy = argv[i][0] == '+' ? 2 : 1;
209     dosun = 0;
210     break;
211     case 't':
212     betaturbidity = atof(argv[++i]);
213     break;
214 greg 2.9 case 'w':
215     suppress_warnings = 1;
216     break;
217 greg 2.1 case 'b':
218     zenithbr = atof(argv[++i]);
219     break;
220     case 'g':
221     gprefl = atof(argv[++i]);
222     break;
223     case 'a':
224 greg 2.9 s_latitude = atof(argv[++i]) * (M_PI/180);
225 greg 2.1 break;
226     case 'o':
227 greg 2.9 s_longitude = atof(argv[++i]) * (M_PI/180);
228 greg 2.1 break;
229     case 'm':
230 greg 2.9 s_meridian = atof(argv[++i]) * (M_PI/180);
231 greg 2.1 break;
232    
233     case 'O':
234     output = atof(argv[++i]); /*define the unit of the output of the program :
235 greg 2.9 sky and sun luminance/radiance (0==W visible, 1==W solar radiation, 2==lm) */
236 greg 2.1 break;
237    
238     case 'P':
239     input = 0; /* Perez parameters: epsilon, delta */
240     skyclearness = atof(argv[++i]);
241     skybrightness = atof(argv[++i]);
242     break;
243    
244     case 'W': /* direct normal Irradiance [W/m^2] */
245     input = 1; /* diffuse horizontal Irrad. [W/m^2] */
246     directirradiance = atof(argv[++i]);
247 greg 2.9 diffuseirradiance = atof(argv[++i]);
248 greg 2.1 break;
249    
250     case 'L': /* direct normal Illuminance [Lux] */
251     input = 2; /* diffuse horizontal Ill. [Lux] */
252     directilluminance = atof(argv[++i]);
253 greg 2.9 diffuseilluminance = atof(argv[++i]);
254 greg 2.1 break;
255    
256     case 'G': /* direct horizontal Irradiance [W/m^2] */
257     input = 3; /* diffuse horizontal Irrad. [W/m^2] */
258     directirradiance = atof(argv[++i]);
259 greg 2.9 diffuseirradiance = atof(argv[++i]);
260     break;
261    
262     case 'l':
263     sunaltitude_border = atof(argv[++i]);
264 greg 2.1 break;
265 greg 2.9
266 greg 2.1
267     default:
268     sprintf(errmsg, "unknown option: %s", argv[i]);
269     userror(errmsg);
270     }
271     else
272     userror("bad option");
273    
274 greg 2.9 if (fabs(s_meridian-s_longitude) > 30*M_PI/180)
275 greg 2.1 fprintf(stderr,
276     "%s: warning: %.1f hours btwn. standard meridian and longitude\n",
277 greg 2.9 progname, (s_longitude-s_meridian)*12/M_PI);
278 greg 2.1
279    
280     /* allocation dynamique de memoire pour les pointeurs */
281 greg 2.9 if ( (c_perez = calloc(5, sizeof(double))) == NULL )
282 greg 2.1 {
283     fprintf(stderr,"Out of memory error in function main !");
284 greg 2.9 return 1;
285 greg 2.1 }
286    
287     printhead(argc, argv);
288    
289     computesky();
290     printsky();
291    
292 greg 2.9 return 0;
293 greg 2.1 }
294    
295    
296 greg 2.9 void computesky() /* compute sky parameters */
297 greg 2.1 {
298    
299     /* new variables */
300 greg 2.6 int j;
301 greg 2.1 float *lv_mod; /* 145 luminance values*/
302     /* 145 directions for the calculation of the normalization coefficient, coefficient Perez model */
303 greg 2.9 float *theta_o, *phi_o;
304 greg 2.1 double dzeta, gamma;
305     double normfactor;
306    
307    
308    
309     /* compute solar direction */
310    
311     if (month) { /* from date and time */
312     int jd;
313     double sd, st;
314    
315     jd = jdate(month, day); /* Julian date */
316     sd = sdec(jd); /* solar declination */
317     if (tsolar) /* solar time */
318     st = hour;
319     else
320     st = hour + stadj(jd);
321     altitude = salt(sd, st);
322     azimuth = sazi(sd, st);
323    
324     daynumber = (double)jdate(month, day);
325    
326     }
327 greg 2.9
328    
329    
330    
331    
332     /* if loop for the -l option. 01/2013 Sprenger */
333    
334     if (altitude*180/M_PI < sunaltitude_border) {
335    
336     if (suppress_warnings==0)
337     fprintf(stderr, "Warning: sun altitude (%.3f degrees) below the border (%.3f degrees)\n",altitude*180/M_PI,sunaltitude_border);
338     print_error_sky();
339     exit(0);
340     }
341    
342    
343    
344    
345    
346     if (!cloudy && altitude > 87.*M_PI/180.) {
347    
348     if (suppress_warnings==0) {
349     fprintf(stderr,
350 greg 2.1 "%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
351     progname);
352 greg 2.9 }
353     altitude = 87.*M_PI/180.;
354 greg 2.1 }
355 greg 2.9
356 greg 2.1 sundir[0] = -sin(azimuth)*cos(altitude);
357     sundir[1] = -cos(azimuth)*cos(altitude);
358     sundir[2] = sin(altitude);
359    
360    
361     /* calculation for the new functions */
362 greg 2.9 sunzenith = 90 - altitude*180/M_PI;
363 greg 2.1
364    
365    
366 greg 2.9 /* compute the inputs for the calculation of the light distribution over the sky*/
367 greg 2.1 if (input==0)
368     {
369     check_parametrization();
370 greg 2.9 diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
371 greg 2.1 directirradiance = direct_irradiance_from_sky_clearness();
372     check_irradiances();
373    
374     if (output==0 || output==2)
375     {
376 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
377 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
378     check_illuminances();
379     }
380     }
381    
382    
383     else if (input==1)
384     {
385     check_irradiances();
386     skybrightness = sky_brightness();
387     skyclearness = sky_clearness();
388     check_parametrization();
389    
390     if (output==0 || output==2)
391     {
392 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
393 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
394     check_illuminances();
395     }
396    
397     }
398    
399    
400     else if (input==2)
401     {
402     check_illuminances();
403     illu_to_irra_index();
404     check_parametrization();
405     }
406    
407    
408     else if (input==3)
409     {
410     if (altitude<=0)
411     {
412 greg 2.9 if (suppress_warnings==0)
413     fprintf(stderr, "Warning: solar zenith angle larger than 90 degrees; using zero irradiance to proceed\n");
414     directirradiance = 0;
415     diffuseirradiance = 0;
416     } else {
417     directirradiance=directirradiance/sin(altitude);
418 greg 2.1 }
419     check_irradiances();
420     skybrightness = sky_brightness();
421     skyclearness = sky_clearness();
422     check_parametrization();
423    
424     if (output==0 || output==2)
425     {
426 greg 2.9 diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
427 greg 2.1 directilluminance = directirradiance*direct_n_effi_PEREZ();
428     check_illuminances();
429     }
430    
431     }
432    
433    
434     else {fprintf(stderr,"error in giving the input arguments"); exit(1);}
435    
436    
437    
438 greg 2.9 /* normalization factor for the relative sky luminance distribution, diffuse part*/
439 greg 2.1
440     if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
441     {
442     fprintf(stderr,"Out of memory in function main");
443     exit(1);
444     }
445    
446     /* read the angles */
447 greg 2.9 theta_o = defangle_theta;
448     phi_o = defangle_phi;
449 greg 2.1
450 greg 2.9 /* parameters for the perez model */
451 greg 2.1 coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
452    
453 greg 2.9 /*calculation of the modelled luminance */
454 greg 2.1 for (j=0;j<145;j++)
455     {
456     theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
457     *(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
458 greg 2.9 // printf("theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j));
459 greg 2.1 }
460    
461     /* integration of luminance for the normalization factor, diffuse part of the sky*/
462     diffnormalization = integ_lv(lv_mod, theta_o);
463     /*printf("perez integration %lf\n", diffnormalization);*/
464    
465    
466    
467    
468 greg 2.9 /*normalization coefficient in lumen or in watt*/
469 greg 2.1 if (output==0)
470     {
471 greg 2.9 diffnormalization = diffuseilluminance/diffnormalization/WHTEFFICACY;
472 greg 2.1 }
473     else if (output==1)
474     {
475 greg 2.9 diffnormalization = diffuseirradiance/diffnormalization;
476 greg 2.1 }
477     else if (output==2)
478     {
479 greg 2.9 diffnormalization = diffuseilluminance/diffnormalization;
480 greg 2.1 }
481    
482 greg 2.9 else {fprintf(stderr,"Wrong output specification.\n"); exit(1);}
483 greg 2.1
484    
485    
486    
487 greg 2.9 /* calculation for the solar source */
488 greg 2.1 if (output==0)
489 greg 2.9 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY;
490 greg 2.1
491     else if (output==1)
492 greg 2.9 solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
493 greg 2.1
494     else
495 greg 2.9 solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
496 greg 2.1
497    
498    
499    
500     /* Compute the ground radiance */
501     zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
502     zenithbr*=diffnormalization;
503 greg 2.9
504 greg 2.1 if (skyclearness==1)
505     normfactor = 0.777778;
506    
507     if (skyclearness>=6)
508     {
509 greg 2.9 F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
510     normfactor = normsc()/F2/M_PI;
511 greg 2.1 }
512    
513     if ( (skyclearness>1) && (skyclearness<6) )
514     {
515     S_INTER=1;
516 greg 2.9 F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
517     normfactor = normsc()/F2/M_PI;
518 greg 2.1 }
519    
520     groundbr = zenithbr*normfactor;
521    
522     if (dosun&&(skyclearness>1))
523 greg 2.9 groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];
524 greg 2.1
525     groundbr *= gprefl;
526    
527    
528    
529     return;
530     }
531    
532    
533    
534    
535 greg 2.9 void print_error_sky()
536     {
537     sundir[0] = -sin(azimuth)*cos(altitude);
538     sundir[1] = -cos(azimuth)*cos(altitude);
539     sundir[2] = sin(altitude);
540    
541     printf("\nvoid brightfunc skyfunc\n");
542     printf("2 skybright perezlum.cal\n");
543     printf("0\n");
544     printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]);
545     }
546    
547 greg 2.1
548    
549 greg 2.9 void printsky() /* print out sky */
550 greg 2.1 {
551     if (dosun&&(skyclearness>1))
552 greg 2.9 {
553 greg 2.1 printf("\nvoid light solar\n");
554     printf("0\n0\n");
555     printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance);
556     printf("\nsolar source sun\n");
557     printf("0\n0\n");
558     printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
559 greg 2.9 } else if (dosun) {
560 greg 2.1 printf("\nvoid light solar\n");
561     printf("0\n0\n");
562     printf("3 0.0 0.0 0.0\n");
563     printf("\nsolar source sun\n");
564     printf("0\n0\n");
565     printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
566 greg 2.9 }
567 greg 2.1
568     printf("\nvoid brightfunc skyfunc\n");
569     printf("2 skybright perezlum.cal\n");
570     printf("0\n");
571     printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
572 greg 2.9 *(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
573     sundir[0], sundir[1], sundir[2]);
574 greg 2.1 }
575    
576    
577 greg 2.9 void printdefaults() /* print default values */
578 greg 2.1 {
579     printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
580     if (zenithbr > 0.0)
581     printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr);
582     else
583     printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity);
584 greg 2.9 printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI));
585     printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI));
586     printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI));
587 greg 2.1 }
588    
589    
590 greg 2.9 void userror(char* msg) /* print usage error and quit */
591 greg 2.1 {
592     if (msg != NULL)
593     fprintf(stderr, "%s: Use error - %s\n", progname, msg);
594 greg 2.9 fprintf(stderr, "Usage: %s month day hour [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
595     fprintf(stderr, "or: %s -ang altitude azimuth [-P|-W|-L|-G] direct_value diffuse_value [options]\n", progname);
596 greg 2.1 fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n");
597     fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
598     fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
599     fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
600     fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
601 greg 2.9 fprintf(stderr, " gendaylit version 2.00 (2013/01/28) \n");
602 greg 2.1 exit(1);
603     }
604    
605    
606    
607 greg 2.9 double normsc() /* compute normalization factor (E0*F2/L0) */
608 greg 2.1 {
609     static double nfc[2][5] = {
610     /* clear sky approx. */
611     {2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
612     /* intermediate sky approx. */
613     {3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
614     };
615     register double *nf;
616     double x, nsc;
617     register int i;
618     /* polynomial approximation */
619     nf = nfc[S_INTER];
620 greg 2.9 x = (altitude - M_PI/4.0)/(M_PI/4.0);
621 greg 2.1 nsc = nf[i=4];
622     while (i--)
623     nsc = nsc*x + nf[i];
624    
625     return(nsc);
626     }
627    
628    
629    
630 greg 2.9 void printhead(int ac, char** av) /* print command header */
631 greg 2.1 {
632     putchar('#');
633     while (ac--) {
634     putchar(' ');
635     fputs(*av++, stdout);
636     }
637     putchar('\n');
638     }
639    
640    
641    
642    
643    
644    
645     /* Perez models */
646    
647     /* Perez global horizontal luminous efficacy model */
648     double glob_h_effi_PEREZ()
649     {
650    
651     double value;
652     double category_bounds[10], a[10], b[10], c[10], d[10];
653     int category_total_number, category_number, i;
654    
655    
656 greg 2.9 if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
657     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n");
658 greg 2.1
659     /* initialize category bounds (clearness index bounds) */
660    
661     category_total_number = 8;
662    
663     category_bounds[1] = 1;
664     category_bounds[2] = 1.065;
665     category_bounds[3] = 1.230;
666     category_bounds[4] = 1.500;
667     category_bounds[5] = 1.950;
668     category_bounds[6] = 2.800;
669     category_bounds[7] = 4.500;
670     category_bounds[8] = 6.200;
671     category_bounds[9] = 12.01;
672    
673    
674     /* initialize model coefficients */
675     a[1] = 96.63;
676     a[2] = 107.54;
677     a[3] = 98.73;
678     a[4] = 92.72;
679     a[5] = 86.73;
680     a[6] = 88.34;
681     a[7] = 78.63;
682     a[8] = 99.65;
683    
684     b[1] = -0.47;
685     b[2] = 0.79;
686     b[3] = 0.70;
687     b[4] = 0.56;
688     b[5] = 0.98;
689     b[6] = 1.39;
690     b[7] = 1.47;
691     b[8] = 1.86;
692    
693     c[1] = 11.50;
694     c[2] = 1.79;
695     c[3] = 4.40;
696     c[4] = 8.36;
697     c[5] = 7.10;
698     c[6] = 6.06;
699     c[7] = 4.93;
700     c[8] = -4.46;
701    
702     d[1] = -9.16;
703     d[2] = -1.19;
704     d[3] = -6.95;
705     d[4] = -8.31;
706     d[5] = -10.94;
707     d[6] = -7.60;
708     d[7] = -11.37;
709     d[8] = -3.15;
710    
711    
712    
713    
714     for (i=1; i<=category_total_number; i++)
715     {
716     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
717     category_number = i;
718     }
719    
720     value = a[category_number] + b[category_number]*atm_preci_water +
721 greg 2.9 c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness);
722 greg 2.1
723     return(value);
724     }
725    
726    
727     /* global horizontal diffuse efficacy model, according to PEREZ */
728     double glob_h_diffuse_effi_PEREZ()
729     {
730     double value;
731     double category_bounds[10], a[10], b[10], c[10], d[10];
732     int category_total_number, category_number, i;
733    
734    
735 greg 2.9 if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
736     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_effi_PEREZ \n");
737 greg 2.1
738     /* initialize category bounds (clearness index bounds) */
739    
740     category_total_number = 8;
741    
742 greg 2.9 //XXX: category_bounds > 0.1
743 greg 2.1 category_bounds[1] = 1;
744     category_bounds[2] = 1.065;
745     category_bounds[3] = 1.230;
746     category_bounds[4] = 1.500;
747     category_bounds[5] = 1.950;
748     category_bounds[6] = 2.800;
749     category_bounds[7] = 4.500;
750     category_bounds[8] = 6.200;
751     category_bounds[9] = 12.01;
752    
753    
754     /* initialize model coefficients */
755     a[1] = 97.24;
756     a[2] = 107.22;
757     a[3] = 104.97;
758     a[4] = 102.39;
759     a[5] = 100.71;
760     a[6] = 106.42;
761     a[7] = 141.88;
762     a[8] = 152.23;
763    
764     b[1] = -0.46;
765     b[2] = 1.15;
766     b[3] = 2.96;
767     b[4] = 5.59;
768     b[5] = 5.94;
769     b[6] = 3.83;
770     b[7] = 1.90;
771     b[8] = 0.35;
772    
773     c[1] = 12.00;
774     c[2] = 0.59;
775     c[3] = -5.53;
776     c[4] = -13.95;
777     c[5] = -22.75;
778     c[6] = -36.15;
779     c[7] = -53.24;
780     c[8] = -45.27;
781    
782     d[1] = -8.91;
783     d[2] = -3.95;
784     d[3] = -8.77;
785     d[4] = -13.90;
786     d[5] = -23.74;
787     d[6] = -28.83;
788     d[7] = -14.03;
789     d[8] = -7.98;
790    
791    
792    
793    
794 greg 2.9 category_number = -1;
795 greg 2.1 for (i=1; i<=category_total_number; i++)
796     {
797     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
798     category_number = i;
799     }
800    
801 greg 2.9 if (category_number == -1) {
802     if (suppress_warnings==0)
803     fprintf(stderr, "ERROR: Model parameters out of range\n");
804     print_error_sky();
805     exit(1);
806     }
807    
808    
809     value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) +
810 greg 2.1 d[category_number]*log(skybrightness);
811    
812     return(value);
813     }
814    
815    
816     /* direct normal efficacy model, according to PEREZ */
817    
818     double direct_n_effi_PEREZ()
819    
820     {
821     double value;
822     double category_bounds[10], a[10], b[10], c[10], d[10];
823     int category_total_number, category_number, i;
824    
825    
826 greg 2.9 if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
827     fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");
828 greg 2.1
829    
830     /* initialize category bounds (clearness index bounds) */
831    
832     category_total_number = 8;
833    
834     category_bounds[1] = 1;
835     category_bounds[2] = 1.065;
836     category_bounds[3] = 1.230;
837     category_bounds[4] = 1.500;
838     category_bounds[5] = 1.950;
839     category_bounds[6] = 2.800;
840     category_bounds[7] = 4.500;
841     category_bounds[8] = 6.200;
842     category_bounds[9] = 12.1;
843    
844    
845     /* initialize model coefficients */
846     a[1] = 57.20;
847     a[2] = 98.99;
848     a[3] = 109.83;
849     a[4] = 110.34;
850     a[5] = 106.36;
851     a[6] = 107.19;
852     a[7] = 105.75;
853     a[8] = 101.18;
854    
855     b[1] = -4.55;
856     b[2] = -3.46;
857     b[3] = -4.90;
858     b[4] = -5.84;
859     b[5] = -3.97;
860     b[6] = -1.25;
861     b[7] = 0.77;
862     b[8] = 1.58;
863    
864     c[1] = -2.98;
865     c[2] = -1.21;
866     c[3] = -1.71;
867     c[4] = -1.99;
868     c[5] = -1.75;
869     c[6] = -1.51;
870     c[7] = -1.26;
871     c[8] = -1.10;
872    
873     d[1] = 117.12;
874     d[2] = 12.38;
875     d[3] = -8.81;
876     d[4] = -4.56;
877     d[5] = -6.16;
878     d[6] = -26.73;
879     d[7] = -34.44;
880     d[8] = -8.29;
881    
882    
883    
884     for (i=1; i<=category_total_number; i++)
885     {
886     if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
887     category_number = i;
888     }
889    
890 greg 2.9 value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness;
891 greg 2.1
892     if (value < 0) value = 0;
893    
894     return(value);
895     }
896    
897    
898     /*check the range of epsilon and delta indexes of the perez parametrization*/
899     void check_parametrization()
900     {
901 greg 2.9 if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
902 greg 2.1 {
903 greg 2.9
904     /* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
905     if (skyclearness<skyclearinf){
906     skyclearness=skyclearinf;
907     if (suppress_warnings==0)
908     fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness);
909     }
910     if (skyclearness>skyclearsup){
911     skyclearness=skyclearsup-0.1;
912     if (suppress_warnings==0)
913     fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness);
914     }
915     if (skybrightness<skybriginf){
916     skybrightness=skybriginf;
917     if (suppress_warnings==0)
918     fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness);
919     }
920     if (skybrightness>skybrigsup){
921     skybrightness=skybrigsup;
922     if (suppress_warnings==0)
923     fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness);
924 greg 2.1 }
925 greg 2.9
926     return; }
927 greg 2.1 else return;
928     }
929    
930    
931 greg 2.9 /* validity of the direct and diffuse components */
932 greg 2.1 void check_illuminances()
933     {
934 greg 2.9 if (directilluminance < 0) {
935     fprintf(stderr,"WARNING: direct illuminance < 0. Using 0.0\n");
936     directilluminance = 0.0;
937     }
938     if (diffuseilluminance < 0) {
939     fprintf(stderr,"WARNING: diffuse illuminance < 0. Using 0.0\n");
940     diffuseilluminance = 0.0;
941     }
942     if (directilluminance > solar_constant_l*1000.0) {
943     fprintf(stderr,"ERROR: direct illuminance exceeds solar constant\n");
944     exit(1);
945 greg 2.1 }
946     }
947    
948    
949     void check_irradiances()
950     {
951 greg 2.9 if (directirradiance < 0) {
952     fprintf(stderr,"WARNING: direct irradiance < 0. Using 0.0\n");
953     directirradiance = 0.0;
954     }
955     if (diffuseirradiance < 0) {
956     fprintf(stderr,"WARNING: diffuse irradiance < 0. Using 0.0\n");
957     diffuseirradiance = 0.0;
958     }
959     if (directirradiance > solar_constant_e) {
960     fprintf(stderr,"ERROR: direct irradiance exceeds solar constant\n");
961     exit(1);
962     }
963 greg 2.1 }
964    
965    
966    
967     /* Perez sky's brightness */
968     double sky_brightness()
969     {
970     double value;
971    
972 greg 2.9 value = diffuseirradiance * air_mass() / ( solar_constant_e*get_eccentricity());
973 greg 2.1
974     return(value);
975     }
976    
977    
978     /* Perez sky's clearness */
979     double sky_clearness()
980     {
981 greg 2.9 double value;
982 greg 2.1
983 greg 2.9 value = ( (diffuseirradiance + directirradiance)/(diffuseirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ;
984 greg 2.1
985 greg 2.9 return(value);
986 greg 2.1 }
987    
988    
989    
990     /* diffus horizontal irradiance from Perez sky's brightness */
991 greg 2.9 double diffuse_irradiance_from_sky_brightness()
992 greg 2.1 {
993     double value;
994    
995     value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity());
996    
997     return(value);
998     }
999    
1000    
1001     /* direct normal irradiance from Perez sky's clearness */
1002     double direct_irradiance_from_sky_clearness()
1003     {
1004     double value;
1005    
1006 greg 2.9 value = diffuse_irradiance_from_sky_brightness();
1007     value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) );
1008 greg 2.1
1009     return(value);
1010     }
1011    
1012    
1013 greg 2.9 void illu_to_irra_index()
1014 greg 2.1 {
1015 greg 2.9 double test1=0.1, test2=0.1, d_eff;
1016 greg 2.1 int counter=0;
1017    
1018 greg 2.9 diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l*1000);
1019 greg 2.1 directirradiance = directilluminance*solar_constant_e/(solar_constant_l*1000);
1020     skyclearness = sky_clearness();
1021     skybrightness = sky_brightness();
1022 greg 2.9 check_parametrization();
1023 greg 2.1
1024 greg 2.9 while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
1025 greg 2.1 || skyclearness>skyclearinf || skyclearness<skyclearsup
1026     || skybrightness>skybriginf || skybrightness<skybrigsup )
1027     && !(counter==5) )
1028     {
1029    
1030 greg 2.9 test1=diffuseirradiance;
1031 greg 2.1 test2=directirradiance;
1032     counter++;
1033    
1034 greg 2.9 diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ();
1035     d_eff = direct_n_effi_PEREZ();
1036     if (d_eff < 0.1)
1037     directirradiance = 0;
1038     else
1039     directirradiance = directilluminance/d_eff;
1040 greg 2.1
1041     skybrightness = sky_brightness();
1042     skyclearness = sky_clearness();
1043 greg 2.9 check_parametrization();
1044    
1045 greg 2.1 }
1046    
1047    
1048     return;
1049     }
1050    
1051 greg 2.9 static int get_numlin(float epsilon)
1052 greg 2.1 {
1053 greg 2.9 if (epsilon < 1.065)
1054     return 0;
1055     else if (epsilon < 1.230)
1056     return 1;
1057     else if (epsilon < 1.500)
1058     return 2;
1059     else if (epsilon < 1.950)
1060     return 3;
1061     else if (epsilon < 2.800)
1062     return 4;
1063     else if (epsilon < 4.500)
1064     return 5;
1065     else if (epsilon < 6.200)
1066     return 6;
1067     return 7;
1068 greg 2.1 }
1069    
1070     /* sky luminance perez model */
1071 greg 2.9 double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
1072 greg 2.1 {
1073     float x[5][4];
1074     int i,j,num_lin;
1075     double c_perez[5];
1076    
1077     if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1078     {
1079 greg 2.9 fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez!\n");
1080 greg 2.1 exit(1);
1081     }
1082    
1083     /* correction de modele de Perez solar energy ...*/
1084     if ( (epsilon > 1.065) && (epsilon < 2.8) )
1085     {
1086     if ( Delta < 0.2 ) Delta = 0.2;
1087     }
1088    
1089 greg 2.9 num_lin = get_numlin(epsilon);
1090 greg 2.1
1091     for (i=0;i<5;i++)
1092     for (j=0;j<4;j++)
1093     {
1094     x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1095     /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1096     }
1097    
1098    
1099     if (num_lin)
1100     {
1101     for (i=0;i<5;i++)
1102     c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1103     }
1104     else
1105     {
1106     c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1107     c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1108     c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1109     c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1110     c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1111     }
1112    
1113    
1114     return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) *
1115     (1 + c_perez[2]*exp(c_perez[3]*gamma) +
1116     c_perez[4]*cos(gamma)*cos(gamma) );
1117     }
1118    
1119    
1120    
1121     /* coefficients for the sky luminance perez model */
1122 greg 2.9 void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[])
1123 greg 2.1 {
1124     float x[5][4];
1125     int i,j,num_lin;
1126    
1127     if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
1128     {
1129     fprintf(stderr,"Epsilon out of range in function calc_rel_lum_perez !\n");
1130     exit(1);
1131     }
1132    
1133     /* correction du modele de Perez solar energy ...*/
1134     if ( (epsilon > 1.065) && (epsilon < 2.8) )
1135     {
1136     if ( Delta < 0.2 ) Delta = 0.2;
1137     }
1138    
1139 greg 2.9 num_lin = get_numlin(epsilon);
1140    
1141     //fprintf(stderr,"numlin %d\n", num_lin);
1142 greg 2.1
1143     for (i=0;i<5;i++)
1144     for (j=0;j<4;j++)
1145     {
1146     x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
1147     /* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
1148     }
1149    
1150    
1151     if (num_lin)
1152     {
1153     for (i=0;i<5;i++)
1154     *(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
1155    
1156     }
1157     else
1158     {
1159     *(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
1160     *(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
1161     *(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
1162     *(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
1163     *(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
1164    
1165    
1166     }
1167    
1168    
1169     return;
1170     }
1171    
1172    
1173     /* degrees into radians */
1174     double radians(double degres)
1175     {
1176 greg 2.9 return degres*M_PI/180.0;
1177 greg 2.1 }
1178    
1179     /* radian into degrees */
1180     double degres(double radians)
1181     {
1182 greg 2.9 return radians/M_PI*180.0;
1183 greg 2.1 }
1184    
1185     /* calculation of the angles dzeta and gamma */
1186     void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
1187     {
1188     *dzeta = theta; /* dzeta = phi */
1189     if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) )
1190     *gamma = 0;
1191     else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
1192     {
1193     printf("error in calculation of gamma (angle between point and sun");
1194     exit(3);
1195     }
1196     else
1197     *gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
1198     }
1199    
1200    
1201    
1202     /********************************************************************************/
1203     /* Fonction: integ_lv */
1204     /* */
1205     /* In: float *lv,*theta */
1206     /* int sun_pos */
1207     /* */
1208     /* Out: double */
1209     /* */
1210     /* Update: 29/08/93 */
1211     /* */
1212     /* Rem: */
1213     /* */
1214     /* But: calcul l'integrale de luminance relative sans la dir. du soleil */
1215     /* */
1216     /********************************************************************************/
1217     double integ_lv(float *lv,float *theta)
1218     {
1219     int i;
1220     double buffer=0.0;
1221    
1222     for (i=0;i<145;i++)
1223     buffer += (*(lv+i))*cos(radians(*(theta+i)));
1224    
1225 greg 2.9 return buffer*2*M_PI/144;
1226 greg 2.1
1227     }
1228    
1229    
1230    
1231    
1232    
1233    
1234     /* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */
1235    
1236     double get_eccentricity()
1237     {
1238     double day_angle;
1239     double E0;
1240    
1241 greg 2.9 day_angle = 2*M_PI*(daynumber - 1)/365;
1242 greg 2.1 E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+
1243     0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
1244    
1245     return (E0);
1246    
1247     }
1248    
1249    
1250     /* enter sunzenith angle (degrees) return relative air mass (double) */
1251     double air_mass()
1252     {
1253     double m;
1254    
1255     if (sunzenith>90)
1256     {
1257 greg 2.9 fprintf(stderr, "Solar zenith angle larger than 90 degrees in function air_mass()\n");
1258 greg 2.1 exit(1);
1259     }
1260    
1261 greg 2.9 m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
1262 greg 2.1 return(m);
1263     }
1264    
1265    
1266