ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
(Generate patch)

Comparing ray/src/common/fvect.c (file contents):
Revision 2.5 by gwlarson, Wed Nov 25 16:56:33 1998 UTC vs.
Revision 2.9 by greg, Wed Mar 23 01:54:55 2005 UTC

# Line 1 | Line 1
1 /* Copyright (c) 1998 Silicon Graphics, Inc. */
2
1   #ifndef lint
2 < static char SCCSid[] = "$SunId$ SGI";
2 > static const char       RCSid[] = "$Id$";
3   #endif
6
4   /*
5 < *  fvect.c - routines for float vector calculations
9 < *
10 < *     8/14/85
5 > *  fvect.c - routines for floating-point vector calculations
6   */
7  
8 + #include "copyright.h"
9 +
10   #include  <math.h>
11   #include  "fvect.h"
12  
13  
14   double
15 < fdot(v1, v2)                    /* return the dot product of two vectors */
16 < register FVECT  v1, v2;
15 > fdot(                           /* return the dot product of two vectors */
16 > register FVECT v1,
17 > register FVECT v2
18 > )
19   {
20          return(DOT(v1,v2));
21   }
22  
23  
24   double
25 < dist2(p1, p2)                   /* return square of distance between points */
26 < register FVECT  p1, p2;
25 > dist2(                          /* return square of distance between points */
26 > register FVECT p1,
27 > register FVECT p2
28 > )
29   {
30          FVECT  delta;
31  
# Line 37 | Line 38 | register FVECT  p1, p2;
38  
39  
40   double
41 < dist2line(p, ep1, ep2)          /* return square of distance to line */
42 < FVECT  p;               /* the point */
43 < FVECT  ep1, ep2;        /* points on the line */
41 > dist2line(                      /* return square of distance to line */
42 > FVECT p,                /* the point */
43 > FVECT ep1,
44 > FVECT ep2               /* points on the line */
45 > )
46   {
47          register double  d, d1, d2;
48  
# Line 52 | Line 55 | FVECT  ep1, ep2;       /* points on the line */
55  
56  
57   double
58 < dist2lseg(p, ep1, ep2)          /* return square of distance to line segment */
59 < FVECT  p;               /* the point */
60 < FVECT  ep1, ep2;        /* the end points */
58 > dist2lseg(                      /* return square of distance to line segment */
59 > FVECT p,                /* the point */
60 > FVECT ep1,
61 > FVECT ep2               /* the end points */
62 > )
63   {
64          register double  d, d1, d2;
65  
# Line 75 | Line 80 | FVECT  ep1, ep2;       /* the end points */
80   }
81  
82  
83 < fcross(vres, v1, v2)            /* vres = v1 X v2 */
84 < register FVECT  vres, v1, v2;
83 > void
84 > fcross(                         /* vres = v1 X v2 */
85 > register FVECT vres,
86 > register FVECT v1,
87 > register FVECT v2
88 > )
89   {
90          vres[0] = v1[1]*v2[2] - v1[2]*v2[1];
91          vres[1] = v1[2]*v2[0] - v1[0]*v2[2];
# Line 84 | Line 93 | register FVECT  vres, v1, v2;
93   }
94  
95  
96 < fvsum(vres, v0, v1, f)          /* vres = v0 + f*v1 */
97 < register FVECT  vres, v0, v1;
98 < register double  f;
96 > void
97 > fvsum(                          /* vres = v0 + f*v1 */
98 > register FVECT vres,
99 > register FVECT v0,
100 > register FVECT v1,
101 > register double f
102 > )
103   {
104          vres[0] = v0[0] + f*v1[0];
105          vres[1] = v0[1] + f*v1[1];
# Line 95 | Line 108 | register double  f;
108  
109  
110   double
111 < normalize(v)                    /* normalize a vector, return old magnitude */
112 < register FVECT  v;
111 > normalize(                      /* normalize a vector, return old magnitude */
112 > register FVECT  v
113 > )
114   {
115          register double  len, d;
116          
117          d = DOT(v, v);
118          
119 <        if (d <= 0.0)
119 >        if (d <= FTINY*FTINY)
120                  return(0.0);
121          
122          if (d <= 1.0+FTINY && d >= 1.0-FTINY)
# Line 118 | Line 132 | register FVECT  v;
132   }
133  
134  
135 < spinvector(vres, vorig, vnorm, theta)   /* rotate vector around normal */
136 < FVECT  vres, vorig, vnorm;
137 < double  theta;
135 > int
136 > closestapproach(                        /* closest approach of two rays */
137 > RREAL t[2],             /* returned distances along each ray */
138 > FVECT rorg0,            /* first origin */
139 > FVECT rdir0,            /* first direction (normalized) */
140 > FVECT rorg1,            /* second origin */
141 > FVECT rdir1             /* second direction (normalized) */
142 > )
143 > {
144 >        double  dotprod = DOT(rdir0, rdir1);
145 >        double  denom = 1. - dotprod*dotprod;
146 >        double  o1o2_d1;
147 >        FVECT   o0o1;
148 >
149 >        if (denom <= FTINY) {           /* check if lines are parallel */
150 >                t[0] = t[1] = 0.0;
151 >                return(0);
152 >        }
153 >        VSUB(o0o1, rorg0, rorg1);
154 >        o1o2_d1 = DOT(o0o1, rdir1);
155 >        t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
156 >        t[1] = o1o2_d1 + t[0]*dotprod;
157 >        return(1);
158 > }
159 >
160 >
161 > #if 0
162 > int
163 > closestapproach(                        /* closest approach of two rays */
164 > RREAL t[2],             /* returned distances along each ray */
165 > FVECT rorg0,            /* first origin */
166 > FVECT rdir0,            /* first direction (unnormalized) */
167 > FVECT rorg1,            /* second origin */
168 > FVECT rdir1             /* second direction (unnormalized) */
169 > )
170 > {
171 >        double  dotprod = DOT(rdir0, rdir1);
172 >        double  d0n2 = DOT(rdir0, rdir0);
173 >        double  d1n2 = DOT(rdir1, rdir1);
174 >        double  denom = d0n2*d1n2 - dotprod*dotprod;
175 >        double  o1o2_d1;
176 >        FVECT   o0o1;
177 >
178 >        if (denom <= FTINY) {           /* check if lines are parallel */
179 >                t[0] = t[1] = 0.0;
180 >                return(0);
181 >        }
182 >        VSUB(o0o1, rorg0, rorg1);
183 >        o1o2_d1 = DOT(o0o1, rdir1);
184 >        t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)*d1n2) / denom;
185 >        t[1] = (o1o2_d1 + t[0]*dotprod) / d1n2;
186 >        return(1);
187 > }
188 > #endif
189 >
190 >
191 > void
192 > spinvector(                             /* rotate vector around normal */
193 > FVECT vres,             /* returned vector */
194 > FVECT vorig,            /* original vector */
195 > FVECT vnorm,            /* normalized vector for rotation */
196 > double theta            /* left-hand radians */
197 > )
198   {
199          double  sint, cost, normprod;
200          FVECT  vperp;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines