#ifndef lint static const char RCSid[] = "$Id: fvect.c,v 2.9 2005/03/23 01:54:55 greg Exp $"; #endif /* * fvect.c - routines for floating-point vector calculations */ #include "copyright.h" #include #include "fvect.h" double fdot( /* return the dot product of two vectors */ register FVECT v1, register FVECT v2 ) { return(DOT(v1,v2)); } double dist2( /* return square of distance between points */ register FVECT p1, register FVECT p2 ) { FVECT delta; delta[0] = p2[0] - p1[0]; delta[1] = p2[1] - p1[1]; delta[2] = p2[2] - p1[2]; return(DOT(delta, delta)); } double dist2line( /* return square of distance to line */ FVECT p, /* the point */ FVECT ep1, FVECT ep2 /* points on the line */ ) { register double d, d1, d2; d = dist2(ep1, ep2); d1 = dist2(ep1, p); d2 = d + d1 - dist2(ep2, p); return(d1 - 0.25*d2*d2/d); } double dist2lseg( /* return square of distance to line segment */ FVECT p, /* the point */ FVECT ep1, FVECT ep2 /* the end points */ ) { register double d, d1, d2; d = dist2(ep1, ep2); d1 = dist2(ep1, p); d2 = dist2(ep2, p); if (d2 > d1) { /* check if past endpoints */ if (d2 - d1 > d) return(d1); } else { if (d1 - d2 > d) return(d2); } d2 = d + d1 - d2; return(d1 - 0.25*d2*d2/d); /* distance to line */ } void fcross( /* vres = v1 X v2 */ register FVECT vres, register FVECT v1, register FVECT v2 ) { vres[0] = v1[1]*v2[2] - v1[2]*v2[1]; vres[1] = v1[2]*v2[0] - v1[0]*v2[2]; vres[2] = v1[0]*v2[1] - v1[1]*v2[0]; } void fvsum( /* vres = v0 + f*v1 */ register FVECT vres, register FVECT v0, register FVECT v1, register double f ) { vres[0] = v0[0] + f*v1[0]; vres[1] = v0[1] + f*v1[1]; vres[2] = v0[2] + f*v1[2]; } double normalize( /* normalize a vector, return old magnitude */ register FVECT v ) { register double len, d; d = DOT(v, v); if (d <= FTINY*FTINY) return(0.0); if (d <= 1.0+FTINY && d >= 1.0-FTINY) len = 0.5 + 0.5*d; /* first order approximation */ else len = sqrt(d); v[0] *= d = 1.0/len; v[1] *= d; v[2] *= d; return(len); } int closestapproach( /* closest approach of two rays */ RREAL t[2], /* returned distances along each ray */ FVECT rorg0, /* first origin */ FVECT rdir0, /* first direction (normalized) */ FVECT rorg1, /* second origin */ FVECT rdir1 /* second direction (normalized) */ ) { double dotprod = DOT(rdir0, rdir1); double denom = 1. - dotprod*dotprod; double o1o2_d1; FVECT o0o1; if (denom <= FTINY) { /* check if lines are parallel */ t[0] = t[1] = 0.0; return(0); } VSUB(o0o1, rorg0, rorg1); o1o2_d1 = DOT(o0o1, rdir1); t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom; t[1] = o1o2_d1 + t[0]*dotprod; return(1); } #if 0 int closestapproach( /* closest approach of two rays */ RREAL t[2], /* returned distances along each ray */ FVECT rorg0, /* first origin */ FVECT rdir0, /* first direction (unnormalized) */ FVECT rorg1, /* second origin */ FVECT rdir1 /* second direction (unnormalized) */ ) { double dotprod = DOT(rdir0, rdir1); double d0n2 = DOT(rdir0, rdir0); double d1n2 = DOT(rdir1, rdir1); double denom = d0n2*d1n2 - dotprod*dotprod; double o1o2_d1; FVECT o0o1; if (denom <= FTINY) { /* check if lines are parallel */ t[0] = t[1] = 0.0; return(0); } VSUB(o0o1, rorg0, rorg1); o1o2_d1 = DOT(o0o1, rdir1); t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)*d1n2) / denom; t[1] = (o1o2_d1 + t[0]*dotprod) / d1n2; return(1); } #endif void spinvector( /* rotate vector around normal */ FVECT vres, /* returned vector */ FVECT vorig, /* original vector */ FVECT vnorm, /* normalized vector for rotation */ double theta /* left-hand radians */ ) { double sint, cost, normprod; FVECT vperp; register int i; if (theta == 0.0) { if (vres != vorig) VCOPY(vres, vorig); return; } cost = cos(theta); sint = sin(theta); normprod = DOT(vorig, vnorm)*(1.-cost); fcross(vperp, vnorm, vorig); for (i = 0; i < 3; i++) vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint; }