1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: face.c,v 2.17 2024/08/18 00:06:10 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* face.c - routines dealing with polygonal faces. |
6 |
*/ |
7 |
|
8 |
#include "copyright.h" |
9 |
|
10 |
#include "standard.h" |
11 |
|
12 |
#include "object.h" |
13 |
|
14 |
#include "face.h" |
15 |
|
16 |
/* |
17 |
* A face is given as a list of 3D vertices. The normal |
18 |
* direction and therefore the surface orientation is determined |
19 |
* by the ordering of the vertices. Looking in the direction opposite |
20 |
* the normal (at the front of the face), the vertices will be |
21 |
* listed in counter-clockwise order. |
22 |
* There is no checking done to insure that the edges do not cross |
23 |
* one another. This was considered too expensive and should be unnecessary. |
24 |
* The last vertex is automatically connected to the first. |
25 |
*/ |
26 |
|
27 |
#ifdef SMLFLT |
28 |
#define VERTEPS 1e-3 /* allowed vertex error */ |
29 |
#else |
30 |
#define VERTEPS 1e-5 /* allowed vertex error */ |
31 |
#endif |
32 |
|
33 |
|
34 |
FACE * |
35 |
getface( /* get arguments for a face */ |
36 |
OBJREC *o |
37 |
) |
38 |
{ |
39 |
double d1; |
40 |
int smalloff, badvert; |
41 |
FVECT v1, v2, v3; |
42 |
FACE *f; |
43 |
int i; |
44 |
|
45 |
if ((f = (FACE *)o->os) != NULL) |
46 |
return(f); /* already done */ |
47 |
|
48 |
f = (FACE *)malloc(sizeof(FACE)); |
49 |
if (f == NULL) |
50 |
error(SYSTEM, "out of memory in makeface"); |
51 |
|
52 |
if (o->oargs.nfargs < 9 || o->oargs.nfargs % 3) |
53 |
objerror(o, USER, "bad # arguments"); |
54 |
|
55 |
o->os = (char *)f; /* save face */ |
56 |
|
57 |
f->va = o->oargs.farg; |
58 |
f->nv = o->oargs.nfargs / 3; |
59 |
/* check for last==first */ |
60 |
if (f->nv > 3 && dist2(VERTEX(f,0),VERTEX(f,f->nv-1)) <= FTINY*FTINY) |
61 |
f->nv--; |
62 |
/* compute area and normal */ |
63 |
f->norm[0] = f->norm[1] = f->norm[2] = 0.0; |
64 |
v1[0] = VERTEX(f,1)[0] - VERTEX(f,0)[0]; |
65 |
v1[1] = VERTEX(f,1)[1] - VERTEX(f,0)[1]; |
66 |
v1[2] = VERTEX(f,1)[2] - VERTEX(f,0)[2]; |
67 |
for (i = 2; i < f->nv; i++) { |
68 |
v2[0] = VERTEX(f,i)[0] - VERTEX(f,0)[0]; |
69 |
v2[1] = VERTEX(f,i)[1] - VERTEX(f,0)[1]; |
70 |
v2[2] = VERTEX(f,i)[2] - VERTEX(f,0)[2]; |
71 |
fcross(v3, v1, v2); |
72 |
f->norm[0] += v3[0]; |
73 |
f->norm[1] += v3[1]; |
74 |
f->norm[2] += v3[2]; |
75 |
VCOPY(v1, v2); |
76 |
} |
77 |
f->area = normalize(f->norm); |
78 |
if (f->area == 0.0) { |
79 |
objerror(o, WARNING, "zero area"); /* used to be fatal */ |
80 |
f->offset = 0.0; |
81 |
f->ax = 0; |
82 |
return(f); |
83 |
} |
84 |
f->area *= 0.5; |
85 |
/* compute offset */ |
86 |
badvert = 0; |
87 |
f->offset = DOT(f->norm, VERTEX(f,0)); |
88 |
smalloff = fabs(f->offset) <= VERTEPS; |
89 |
for (i = 1; i < f->nv; i++) { |
90 |
d1 = DOT(f->norm, VERTEX(f,i)); |
91 |
if (smalloff) |
92 |
badvert += fabs(d1 - f->offset/i) > VERTEPS; |
93 |
else |
94 |
badvert += fabs(1.0 - d1*i/f->offset) > VERTEPS; |
95 |
f->offset += d1; |
96 |
} |
97 |
f->offset /= (double)f->nv; |
98 |
if (f->nv > 3 && badvert) |
99 |
objerror(o, WARNING, "non-planar vertex"); |
100 |
/* find axis */ |
101 |
f->ax = (fabs(f->norm[1]) > fabs(f->norm[0])); |
102 |
if (fabs(f->norm[2]) > fabs(f->norm[f->ax])) |
103 |
f->ax = 2; |
104 |
|
105 |
return(f); |
106 |
} |
107 |
|
108 |
|
109 |
void |
110 |
freeface( /* free memory associated with face */ |
111 |
OBJREC *o |
112 |
) |
113 |
{ |
114 |
if (o->os == NULL) |
115 |
return; |
116 |
free(o->os); |
117 |
o->os = NULL; |
118 |
} |
119 |
|
120 |
int |
121 |
inface( /* determine if point is in face */ |
122 |
FVECT p, |
123 |
FACE *f |
124 |
) |
125 |
{ |
126 |
int ncross, n; |
127 |
double x, y; |
128 |
int tst; |
129 |
int xi, yi; |
130 |
RREAL *p0, *p1; |
131 |
|
132 |
if ((xi = f->ax + 1) >= 3) xi -= 3; |
133 |
if ((yi = xi + 1) >= 3) yi -= 3; |
134 |
x = p[xi]; |
135 |
y = p[yi]; |
136 |
n = f->nv; |
137 |
p0 = f->va + 3*(n-1); /* connect last to first */ |
138 |
p1 = f->va; |
139 |
ncross = 0; |
140 |
/* positive x axis cross test */ |
141 |
while (n--) { |
142 |
if (FABSEQ(p0[yi], y) && FABSEQ(p1[yi], y) && |
143 |
(p0[xi] > x) ^ (p1[xi] > x)) |
144 |
return(1); /* edge case #1 */ |
145 |
if ((p0[yi] > y) ^ (p1[yi] > y)) { |
146 |
tst = (p0[xi] > x) + (p1[xi] > x); |
147 |
if (tst == 2) |
148 |
ncross++; |
149 |
else if (tst) { |
150 |
double prodA = (p0[yi]-y)*(p1[xi]-x); |
151 |
double prodB = (p0[xi]-x)*(p1[yi]-y); |
152 |
if (FABSEQ(prodA, prodB)) |
153 |
return(1); /* edge case #2 */ |
154 |
ncross += (p1[yi] > p0[yi]) ^ (prodA > prodB); |
155 |
} else if (FABSEQ(p0[xi], x) && FABSEQ(p1[xi], x)) |
156 |
return(1); /* edge case #3 */ |
157 |
} |
158 |
p0 = p1; |
159 |
p1 += 3; |
160 |
} |
161 |
return(ncross & 01); |
162 |
} |