ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.34
Committed: Thu Nov 16 21:57:39 2023 UTC (6 months ago) by greg
Content type: text/html
Branch: MAIN
Changes since 1.33: +4 -4 lines
Log Message:
docs: minor wording improvements

File Contents

# User Rev Content
1 greg 1.1 <html>
2 greg 1.34 <!-- RCSid $Id: ray.html,v 1.33 2023/11/15 18:28:10 greg Exp $ -->
3 greg 1.1 <head>
4     <title>
5 greg 1.33 The RADIANCE 6.0 Synthetic Imaging System
6 greg 1.1 </title>
7     </head>
8     <body>
9    
10     <p>
11    
12     <h1>
13 greg 1.33 The RADIANCE 6.0 Synthetic Imaging System
14 greg 1.1 </h1>
15    
16     <p>
17    
18 greg 1.4 Building Technologies Program<br>
19 greg 1.1 Lawrence Berkeley National Laboratory<br>
20     1 Cyclotron Rd., 90-3111<br>
21     Berkeley, CA 94720<br>
22     <a HREF="http://radsite.lbl.gov/radiance"</a>
23     http://radsite.lbl.gov/radiance<br>
24    
25     <p>
26     <hr>
27    
28     <h2>
29     <a NAME="Overview">Overview</a>
30     </h2>
31     <ol>
32     <li><a HREF="#Intro">Introduction</a><!P>
33     <li><a HREF="#Scene">Scene Description</a><!P>
34     <ol>
35     <li><a HREF="#Primitive"> Primitive Types</a>
36     <ol>
37     <li><a HREF="#Surfaces">Surfaces</a>
38     <li><a HREF="#Materials">Materials</a>
39     <li><a HREF="#Textures">Textures</a>
40     <li><a HREF="#Patterns">Patterns</a>
41     <li><a HREF="#Mixtures">Mixtures</a>
42     </ol><!P>
43     <li><a HREF="#Auxiliary">Auxiliary Files</a>
44     <ol>
45     <li><a HREF="#Function">Function Files</a>
46     <li><a HREF="#Data">Data Files</a>
47     <li><a HREF="#Font">Font Files</a>
48     </ol><!P>
49     <li><a HREF="#Generators">Generators</a>
50     </ol><!P>
51     <li><a HREF="#Image">Image Generation</a><!P>
52     <li><a HREF="#License">License</a><!P>
53     <li><a HREF="#Ack">Acknowledgements</a><!P>
54     <li><a HREF="#Ref">References</a><!P>
55     <li><a HREF="#Index">Types Index</a><!P>
56     </ol>
57    
58     <p>
59     <hr>
60    
61     <h2>
62     <a NAME="Intro">1. Introduction</a>
63     </h2>
64    
65     RADIANCE was developed as a research tool for predicting
66     the distribution of visible radiation in illuminated spaces.
67     It takes as input a three-dimensional geometric model
68     of the physical environment, and produces a map of
69     spectral radiance values in a color image.
70     The technique of ray-tracing follows light backwards
71     from the image plane to the source(s).
72     Because it can produce realistic images from a
73     simple description, RADIANCE has a wide range of applications
74     in graphic arts, lighting design,
75     computer-aided engineering and architecture.
76    
77     <p>
78     <img SRC="diagram1.gif">
79     <p>
80     Figure 1
81     <p>
82     The diagram in Figure 1 shows the flow between programs (boxes) and data
83     (ovals).
84     The central program is <i>rpict</i>, which produces a picture from a scene
85     description.
86 greg 1.30 <i>Rvu</i> is a variation of rpict that computes and displays images
87 greg 1.1 interactively, and rtrace computes single ray values.
88     Other programs (not shown) connect many of these elements together,
89     such as the executive programs
90     <i>rad</i>
91     and
92     <i>ranimate</i>,
93     the interactive rendering program
94     <i>rholo</i>,
95     and the animation program
96     <i>ranimove</i>.
97     The program
98     <i>obj2mesh</i>
99     acts as both a converter and scene compiler, converting a Wavefront .OBJ
100     file into a compiled mesh octree for efficient rendering.
101    
102     <p>
103     A scene description file lists the surfaces and materials
104     that make up a specific environment.
105     The current surface types are spheres, polygons, cones, and cylinders.
106     There is also a composite surface type, called mesh, and a pseudosurface
107     type, called instance, which facilitates very complex geometries.
108     Surfaces can be made from materials such as plastic, metal, and glass.
109     Light sources can be distant disks as well as local spheres, disks
110     and polygons.
111    
112     <p>
113     From a three-dimensional scene description and a specified view,
114     <i>rpict</i> produces a two-dimensional image.
115     A picture file is a compressed binary representation of the
116     pixels in the image.
117     This picture can be scaled in size and brightness,
118     anti-aliased, and sent to a graphics output device.
119    
120     <p>
121     A header in each picture file lists the program(s)
122     and parameters that produced it.
123     This is useful for identifying a picture without having to display it.
124     The information can be read by the program <i>getinfo</i>.
125    
126     <p>
127     <hr>
128    
129     <h2>
130     <a name="Scene">2. Scene Description</a>
131     </h2>
132    
133     A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134     It is stored as ASCII text, with the following basic format:
135    
136     <pre>
137     # comment
138    
139     modifier type identifier
140     n S1 S2 &quot;S 3&quot; .. Sn
141     0
142     m R1 R2 R3 .. Rm
143    
144     modifier alias identifier reference
145    
146     ! command
147    
148     ...
149     </pre>
150    
151     A comment line begins with a pound sign, `#'.
152    
153     <p>
154     The <a NAME="scene_desc">scene description primitives</a>
155     all have the same general format, and can be either surfaces or modifiers.
156     A primitive has a modifier, a type, and an identifier.
157     <p>
158     A <a NAME="modifier"><b>modifier</b></a> is either the
159     identifier of a previously defined primitive, or &quot;void&quot;.
160     <br>
161     [ The most recent definition of a modifier is the
162     one used, and later definitions do not cause relinking
163     of loaded primitives.
164     Thus, the same identifier may be used repeatedly,
165     and each new definition will apply to the primitives following it. ]
166     <p>
167     An <a NAME="identifier"><b>identifier</b></a> can be any string
168     (i.e., any sequence of non-white characters).
169     <p>
170     The arguments associated with a primitive can be strings or real numbers.
171     <ul>
172     <li> The first integer following the identifier is the number of <b>string arguments</b>,
173     and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
174     <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
175     (There are currently no primitives that use them, however.)
176     <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
177     </ul>
178    
179     <p>
180     An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
181     a previously defined primitive.
182     This is useful when the same material is
183     used with a different modifier, or as a convenient naming mechanism.
184     The reserved modifier name &quot;inherit&quot; may be used to specificy that
185     an alias will inherit its modifier from the original.
186     Surfaces cannot be aliased.
187    
188     <p>
189     A line beginning with an exclamation point, `!',
190     is interpreted as a command.
191     It is executed by the shell, and its output is read as input to the program.
192     The command must not try to read from its standard input, or confusion
193     will result.
194     A command may be continued over multiple lines using a
195     backslash, `\', to escape the newline.
196    
197     <p>
198     White space is generally ignored, except as a separator.
199     The exception is the newline character after a command or comment.
200     Commands, comments and primitives may appear in any
201     combination, so long as they are not intermingled.
202    
203     <p>
204     <hr>
205    
206     <h3>
207     <a NAME="Primitive">2.1. Primitive Types</a>
208     </h3>
209    
210     Primitives can be <a HREF="#Surfaces">surfaces</a>,
211     <a HREF="#Materials">materials</a>,
212     <a HREF="#Textures">textures</a> or
213     <a HREF="#Patterns">patterns</a>.
214     Modifiers can be <a HREF="#Materials">materials</a>,
215     <a HREF="#Mixtures">mixtures</a>,
216     <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
217     Simple surfaces must have one material in their modifier list.
218    
219     <p>
220     <hr>
221    
222     <h4>
223     <a NAME="Surfaces">2.1.1. Surfaces</a>
224     </h4>
225     <dl>
226    
227     A scene description will consist mostly of surfaces.
228     The basic types are given below.
229    
230     <p>
231    
232     <dt>
233     <a NAME="Source">
234     <b>Source </b>
235     </a>
236     <dd>
237     A source is not really a surface, but a solid angle.
238     It is used for specifying light sources that are very distant.
239     The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
240    
241     <pre>
242     mod source id
243     0
244     0
245     4 xdir ydir zdir angle
246     </pre>
247    
248     <p>
249    
250     <dt>
251     <a NAME="Sphere">
252     <b>Sphere</b>
253     </a>
254     <dd>
255     A sphere is given by its center and radius:
256    
257     <pre>
258     mod sphere id
259     0
260     0
261     4 xcent ycent zcent radius
262     </pre>
263    
264     <p>
265    
266     <dt>
267     <a NAME="Bubble">
268     <b>Bubble</b>
269     </a>
270    
271     <dd>
272     A bubble is simply a sphere whose surface normal points inward.
273    
274     <p>
275    
276     <dt>
277     <a NAME="Polygon">
278     <b>Polygon</b>
279     </a>
280     <dd>
281     A polygon is given by a list of three-dimensional vertices,
282     which are ordered counter-clockwise as viewed from the
283     front side (into the surface normal).
284     The last vertex is automatically connected to the first.
285     Holes are represented in polygons as interior vertices
286     connected to the outer perimeter by coincident edges (seams).
287    
288     <pre>
289     mod polygon id
290     0
291     0
292     3n
293     x1 y1 z1
294     x2 y2 z2
295     ...
296     xn yn zn
297     </pre>
298    
299     <p>
300    
301     <dt>
302     <a NAME="Cone">
303     <b>Cone</b>
304     </a>
305     <dd>
306     A cone is a megaphone-shaped object.
307     It is truncated by two planes perpendicular to its axis,
308     and one of its ends may come to a point.
309     It is given as two axis endpoints, and the starting and ending radii:
310    
311     <pre>
312     mod cone id
313     0
314     0
315     8
316     x0 y0 z0
317     x1 y1 z1
318     r0 r1
319     </pre>
320    
321     <p>
322    
323     <dt>
324     <a NAME="Cup">
325     <b>Cup</b>
326     </a>
327     <dd>
328     A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
329     inward surface normal).
330    
331     <p>
332    
333     <dt>
334     <a NAME="Cylinder">
335     <b>Cylinder</b>
336     </a>
337     <dd>
338     A cylinder is like a <a HREF="#Cone">cone</a>, but its
339     starting and ending radii are equal.
340    
341     <pre>
342     mod cylinder id
343     0
344     0
345     7
346     x0 y0 z0
347     x1 y1 z1
348     rad
349     </pre>
350    
351     <p>
352    
353     <dt>
354     <a NAME="Tube">
355     <b>Tube</b>
356     </a>
357     <dd>
358     A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
359    
360     <p>
361    
362     <dt>
363     <a NAME="Ring">
364     <b>Ring</b>
365     </a>
366     <dd>
367     A ring is a circular disk given by its center,
368     surface normal, and inner and outer radii:
369    
370     <pre>
371     mod ring id
372     0
373     0
374     8
375     xcent ycent zcent
376     xdir ydir zdir
377     r0 r1
378     </pre>
379    
380     <p>
381    
382     <dt>
383     <a NAME="Instance">
384     <b>Instance</b>
385     </a>
386     <dd>
387     An instance is a compound surface, given
388     by the contents of an octree file (created by oconv).
389    
390     <pre>
391     mod instance id
392     1+ octree transform
393     0
394     0
395     </pre>
396    
397     If the modifier is &quot;void&quot;, then surfaces will
398     use the modifiers given in the original description.
399     Otherwise, the modifier specified is used in their place.
400     The transform moves the octree to the desired location in the scene.
401     Multiple instances using the same octree take
402     little extra memory, hence very complex
403     descriptions can be rendered using this primitive.
404    
405     <p>
406     There are a number of important limitations to be aware of
407     when using instances.
408     First, the scene description used to generate the octree must
409     stand on its own, without referring to modifiers in the
410     parent description.
411     This is necessary for oconv to create the octree.
412     Second, light sources in the octree will not be
413     incorporated correctly in the calculation,
414     and they are not recommended.
415     Finally, there is no advantage (other than
416     convenience) to using a single instance of an octree,
417     or an octree containing only a few surfaces.
418     An <a HREF="../man_html/xform.1.html">xform</a> command
419     on the subordinate description is prefered in such cases.
420     </dl>
421    
422     <p>
423    
424     <dt>
425     <a NAME="Mesh">
426     <b>Mesh</b>
427     </a>
428     <dd>
429     A mesh is a compound surface, made up of many triangles and
430     an octree data structure to accelerate ray intersection.
431     It is typically converted from a Wavefront .OBJ file using the
432     <i>obj2mesh</i> program.
433    
434     <pre>
435     mod mesh id
436     1+ meshfile transform
437     0
438     0
439     </pre>
440    
441     If the modifier is &quot;void&quot;, then surfaces will
442     use the modifiers given in the original mesh description.
443     Otherwise, the modifier specified is used in their place.
444     The transform moves the mesh to the desired location in the scene.
445     Multiple instances using the same meshfile take little extra memory,
446     and the compiled mesh itself takes much less space than individual
447     polygons would.
448     In the case of an unsmoothed mesh, using the mesh primitive reduces
449     memory requirements by a factor of 30 relative to individual triangles.
450     If a mesh has smoothed surfaces, we save a factor of 50 or more,
451     permitting very detailed geometries that would otherwise exhaust the
452     available memory.
453     In addition, the mesh primitive can have associated (u,v) coordinates
454     for pattern and texture mapping.
455     These are made available to function files via the Lu and Lv variables.
456    
457     </dl>
458    
459     <p>
460     <hr>
461    
462     <h4>
463     <a NAME="Materials">2.1.2. Materials</a>
464     </h4>
465    
466     A material defines the way light interacts with a surface. The basic types are given below.
467    
468     <p>
469    
470     <dl>
471    
472     <dt>
473     <a NAME="Light">
474     <b>Light</b>
475     </a>
476     <dd>
477     Light is the basic material for self-luminous surfaces (i.e.,
478     light sources).
479     In addition to the <a HREF="#Source">source</a> surface type,
480     <a HREF="#Sphere">spheres</a>,
481     discs (<a HREF="#Ring">rings</a> with zero inner radius),
482     <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
483     Polygons work best when they are rectangular.
484     Cones cannot be used at this time.
485     A pattern may be used to specify a light output distribution.
486     Light is defined simply as a RGB radiance value (watts/steradian/m2):
487    
488     <pre>
489     mod light id
490     0
491     0
492     3 red green blue
493     </pre>
494    
495     <p>
496    
497     <dt>
498     <a NAME="Illum">
499     <b>Illum</b>
500     </a>
501    
502     <dd>
503     Illum is used for secondary light sources with broad distributions.
504     A secondary light source is treated like any other light source, except when viewed directly.
505     It then acts like it is made of a different material (indicated by
506     the string argument), or becomes invisible (if no string argument is given,
507     or the argument is &quot;void&quot;).
508     Secondary sources are useful when modeling windows or brightly illuminated surfaces.
509    
510     <pre>
511     mod illum id
512     1 material
513     0
514     3 red green blue
515     </pre>
516    
517     <p>
518    
519     <dt>
520     <a NAME="Glow">
521     <b>Glow</b>
522     </a>
523    
524     <dd>
525     Glow is used for surfaces that are self-luminous, but limited in their effect.
526     In addition to the radiance value, a maximum radius for shadow testing is given:
527    
528     <pre>
529     mod glow id
530     0
531     0
532     4 red green blue maxrad
533     </pre>
534    
535     If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
536     If maxrad is negative, then the surface will never contribute to scene illumination.
537     Glow sources will never illuminate objects on the other side of an illum surface.
538     This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
539    
540     <p>
541    
542     <dt>
543     <a NAME="Spotlight">
544     <b>Spotlight</b>
545     </a>
546    
547     <dd>
548     Spotlight is used for self-luminous surfaces having directed output.
549     As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
550     The length of the orientation vector is the distance of the effective
551     focus behind the source center (i.e., the focal length).
552    
553     <pre>
554     mod spotlight id
555     0
556     0
557     7 red green blue angle xdir ydir zdir
558     </pre>
559    
560     <p>
561    
562     <dt>
563     <a NAME="Mirror">
564     <b>Mirror</b>
565     </a>
566    
567     <dd>
568 greg 1.6 Mirror is used for planar surfaces that produce virtual source reflections.
569 greg 1.1 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
570     This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
571     The arguments are simply the RGB reflectance values, which should be between 0 and 1.
572     An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
573     If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
574     This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
575    
576     <pre>
577     mod mirror id
578     1 material
579     0
580     3 red green blue
581     </pre>
582    
583     <p>
584    
585     <dt>
586     <a NAME="Prism1">
587     <b>Prism1</b>
588     </a>
589    
590     <dd>
591 greg 1.6 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
592 greg 1.1 It can only be used to modify a planar surface
593     (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
594     and should not result in either light concentration or scattering.
595     The new direction of the ray can be on either side of the material,
596 greg 1.6 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
597 greg 1.1 The arguments give the coefficient for the redirected light and its direction.
598    
599     <pre>
600     mod prism1 id
601     5+ coef dx dy dz funcfile transform
602     0
603     n A1 A2 .. An
604     </pre>
605    
606     The new direction variables dx, dy and dz need not produce a normalized vector.
607     For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
608     See <a HREF="#Function">section 2.2.1</a> on function files for further information.
609    
610     <p>
611    
612     <dt>
613     <a NAME="Prism2">
614     <b>Prism2</b>
615     </a>
616    
617     <dd>
618     The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
619    
620     <pre>
621     mod prism2 id
622     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
623     0
624     n A1 A2 .. An
625     </pre>
626    
627     <p>
628    
629     <dt>
630     <a NAME="Mist">
631     <b>Mist</b>
632     </a>
633    
634     <dd>
635     Mist is a virtual material used to delineate a volume
636     of participating atmosphere.
637     A list of important light sources may be given, along with an
638     extinction coefficient, scattering albedo and scattering eccentricity
639     parameter.
640     The light sources named by the string argument list
641     will be tested for scattering within the volume.
642     Sources are identified by name, and virtual light sources may be indicated
643     by giving the relaying object followed by '&gt;' followed by the source, i.e:
644    
645     <pre>
646     3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
647     </pre>
648    
649     Normally, only one source is given per mist material, and there is an
650     upper limit of 32 to the total number of active scattering sources.
651     The extinction coefficient, if given, is added the the global
652     coefficient set on the command line.
653     Extinction is in units of 1/distance (distance based on the world coordinates),
654     and indicates the proportional loss of radiance over one unit distance.
655     The scattering albedo, if present, will override the global setting within
656     the volume.
657     An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
658     1 1 1 means
659     a perfectly scattering medium (no absorption).
660     The scattering eccentricity parameter will likewise override the global
661     setting if it is present.
662     Scattering eccentricity indicates how much scattered light favors the
663 greg 1.8 forward direction, as fit by the Henyey-Greenstein function:
664 greg 1.1
665     <pre>
666     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
667     </pre>
668    
669     A perfectly isotropic scattering medium has a g parameter of 0, and
670     a highly directional material has a g parameter close to 1.
671     Fits to the g parameter may be found along with typical extinction
672     coefficients and scattering albedos for various atmospheres and
673     cloud types in USGS meteorological tables.
674     (A pattern will be applied to the extinction values.)
675    
676     <pre>
677     mod mist id
678     N src1 src2 .. srcN
679     0
680     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
681     </pre>
682    
683     There are two usual uses of the mist type.
684     One is to surround a beam from a spotlight or laser so that it is
685     visible during rendering.
686     For this application, it is important to use a <a HREF="#Cone">cone</a>
687     (or <a HREF="#Cylinder">cylinder</a>) that
688     is long enough and wide enough to contain the important visible portion.
689     Light source photometry and intervening objects will have the desired
690     effect, and crossing beams will result in additive scattering.
691     For this application, it is best to leave off the real arguments, and
692     use the global rendering parameters to control the atmosphere.
693     The second application is to model clouds or other localized media.
694     Complex boundary geometry may be used to give shape to a uniform medium,
695     so long as the boundary encloses a proper volume.
696     Alternatively, a pattern may be used to set the line integral value
697     through the cloud for a ray entering or exiting a point in a given
698     direction.
699     For this application, it is best if cloud volumes do not overlap each other,
700     and opaque objects contained within them may not be illuminated correctly
701     unless the line integrals consider enclosed geometry.
702    
703     <dt>
704     <a NAME="Plastic">
705     <b>Plastic</b>
706     </a>
707    
708     <dd>
709     Plastic is a material with uncolored highlights.
710     It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
711     Roughness is specified as the rms slope of surface facets.
712     A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
713     Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
714     (A pattern modifying plastic will affect the material color.)
715    
716     <pre>
717     mod plastic id
718     0
719     0
720     5 red green blue spec rough
721     </pre>
722    
723     <p>
724    
725     <dt>
726     <a NAME="Metal">
727     <b>Metal</b>
728     </a>
729    
730     <dd>
731     Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
732     Specularity of metals is usually .9 or greater.
733     As for plastic, roughness values above .2 are uncommon.
734    
735     <p>
736    
737     <dt>
738     <a NAME="Trans">
739     <b>Trans</b>
740     </a>
741    
742     <dd>
743     Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
744     The transmissivity is the fraction of penetrating light that travels all the way through the material.
745     The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
746     Transmitted and diffusely reflected light is modified by the material color.
747     Translucent objects are infinitely thin.
748    
749     <pre>
750     mod trans id
751     0
752     0
753     7 red green blue spec rough trans tspec
754     </pre>
755    
756     <p>
757    
758     <dt>
759     <a NAME="Plastic2">
760     <b>Plastic2</b>
761     </a>
762    
763     <dd>
764     Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
765     This means that highlights in the surface will appear elliptical rather than round.
766     The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
767     These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
768     If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
769     (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
770     The urough value defines the roughness along the u vector given projected onto the surface.
771     The vrough value defines the roughness perpendicular to this vector.
772     Note that the highlight will be narrower in the direction of the smaller roughness value.
773     Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
774    
775     <pre>
776     mod plastic2 id
777     4+ ux uy uz funcfile transform
778     0
779     6 red green blue spec urough vrough
780     </pre>
781    
782     <p>
783    
784     <dt>
785     <a NAME="Metal2">
786     <b>Metal2</b>
787     </a>
788    
789     <dd>
790     Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
791    
792     <p>
793    
794     <dt>
795     <a NAME="Trans2">
796     <b>Trans2</b>
797     </a>
798    
799     <dd>
800     Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
801 greg 1.23 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
802     and the real arguments are the same as for trans but with an additional roughness value.
803 greg 1.1
804     <pre>
805     mod trans2 id
806     4+ ux uy uz funcfile transform
807     0
808     8 red green blue spec urough vrough trans tspec
809     </pre>
810    
811     <p>
812    
813     <dt>
814 greg 1.23 <a NAME="Ashik2">
815     <b>Ashik2</b>
816     </a>
817    
818     <dd>
819     Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820     The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821     arguments have additional flexibility to specify the specular color.
822     Also, rather than roughness, specular power is used, which has no
823     physical meaning other than larger numbers are equivalent to a smoother
824     surface.
825 greg 1.31 Unlike other material types, total reflectance is the sum of
826     diffuse and specular colors, and should be adjusted accordingly.
827 greg 1.23 <pre>
828     mod ashik2 id
829     4+ ux uy uz funcfile transform
830     0
831     8 dred dgrn dblu sred sgrn sblu u-power v-power
832     </pre>
833    
834     <p>
835    
836     <dt>
837 greg 1.1 <a NAME="Dielectric">
838     <b>Dielectric</b>
839     </a>
840    
841     <dd>
842     A dielectric material is transparent, and it refracts light as well as reflecting it.
843     Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
844     Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
845     An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
846     It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
847    
848     <pre>
849     mod dielectric id
850     0
851     0
852     5 rtn gtn btn n hc
853     </pre>
854    
855     <p>
856    
857     <dt>
858     <a NAME="Interface">
859     <b>Interface</b>
860     </a>
861    
862     <dd>
863     An interface is a boundary between two dielectrics.
864     The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
865     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
866    
867     <pre>
868     mod interface id
869     0
870     0
871     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
872     </pre>
873    
874     <p>
875    
876     <dt>
877     <a NAME="Glass">
878     <b>Glass</b>
879     </a>
880    
881     <dd>
882     Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
883     One transmitted ray and one reflected ray is produced.
884     By using a single surface is in place of two, internal reflections are avoided.
885     The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
886     The only specification required is the transmissivity at normal incidence.
887     (Transmissivity is the amount of light not absorbed in one traversal
888     of the material.
889     Transmittance -- the value usually measured -- is the total light
890     transmitted through the pane including multiple reflections.)
891     To compute transmissivity (tn) from transmittance (Tn) use:
892    
893     <pre>
894     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
895     </pre>
896    
897     Standard 88% transmittance glass has a transmissivity of 0.96.
898     (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
899     If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
900    
901     <pre>
902     mod glass id
903     0
904     0
905     3 rtn gtn btn
906     </pre>
907    
908     <p>
909    
910     <dt>
911     <a NAME="Plasfunc">
912     <b>Plasfunc</b>
913     </a>
914    
915     <dd>
916     Plasfunc in used for the procedural definition of plastic-like materials
917     with arbitrary bidirectional reflectance distribution functions (BRDF's).
918     The arguments to this material include the color and specularity,
919     as well as the function defining the specular distribution and the auxiliary file where it may be found.
920    
921     <pre>
922     mod plasfunc id
923     2+ refl funcfile transform
924     0
925     4+ red green blue spec A5 ..
926     </pre>
927    
928     The function refl takes four arguments, the x, y and z
929     direction towards the incident light, and the solid angle
930     subtended by the source.
931     The solid angle is provided to facilitate averaging, and is usually
932     ignored.
933     The refl function should integrate to 1 over
934     the projected hemisphere to maintain energy balance.
935     At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
936     Currently, only the contribution from direct light sources is considered in the specular calculation.
937     As in most material types, the surface normal is always altered to face the incoming ray.
938    
939     <p>
940    
941     <dt>
942     <a NAME="Metfunc">
943     <b>Metfunc</b>
944     </a>
945    
946     <dd>
947     Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
948     but the specular component is multiplied also by the material color.
949    
950     <p>
951    
952     <dt>
953     <a NAME="Transfunc">
954     <b>Transfunc</b>
955     </a>
956    
957     <dd>
958     Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
959     as well as a reflectance distribution.
960     Both reflectance and transmittance are specified with the same function.
961    
962     <pre>
963     mod transfunc id
964     2+ brtd funcfile transform
965     0
966     6+ red green blue rspec trans tspec A7 ..
967     </pre>
968    
969     Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
970     The function brtd should integrate to 1 over each projected hemisphere.
971    
972     <p>
973    
974     <dt>
975     <a NAME="BRTDfunc">
976     <b>BRTDfunc</b>
977     </a>
978    
979     <dd>
980     The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
981     providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
982    
983     <pre>
984     mod BRTDfunc id
985     10+ rrefl grefl brefl
986     rtrns gtrns btrns
987     rbrtd gbrtd bbrtd
988     funcfile transform
989     0
990     9+ rfdif gfdif bfdif
991     rbdif gbdif bbdif
992     rtdif gtdif btdif
993     A10 ..
994     </pre>
995    
996     The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
997     The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
998     The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
999     compute the color coefficients for the directional diffuse part of reflection and transmission.
1000     As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
1001    
1002     <p>
1003     Unlike most other material types, the surface normal is not altered to face the incoming ray.
1004     Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1005     However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1006     as if the ray hit the front surface for convenience.
1007    
1008     <p>
1009     A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1010     or rbdif, gbdif and bbdif for the back side.
1011     The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1012     A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1013    
1014     <p>
1015     Care must be taken when using this material type to produce a physically valid reflection model.
1016     The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1017     transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1018    
1019     <p>
1020    
1021     <dt>
1022     <a NAME="Plasdata">
1023     <b>Plasdata</b>
1024     </a>
1025    
1026     <dd>
1027     Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1028     The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1029     as well as a function to optionally modify the data values.
1030    
1031     <pre>
1032     mod plasdata id
1033     3+n+
1034     func datafile
1035     funcfile x1 x2 .. xn transform
1036     0
1037     4+ red green blue spec A5 ..
1038     </pre>
1039    
1040     The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1041     subtended by the light source (usually ignored).
1042     The data function (func) takes five variables, the
1043     interpolated value from the n-dimensional data file, followed by the
1044     x, y and z direction to the incident light and the solid angle of the source.
1045     The light source direction and size may of course be ignored by the function.
1046    
1047     <p>
1048    
1049     <dt>
1050     <a NAME="Metdata">
1051     <b>Metdata</b>
1052     </a>
1053    
1054     <dd>
1055     As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1056     Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1057    
1058     <p>
1059    
1060     <dt>
1061     <a NAME="Transdata">
1062     <b>Transdata</b>
1063     </a>
1064    
1065     <dd>
1066     Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1067     The parameters are as follows.
1068    
1069     <pre>
1070     mod transdata id
1071     3+n+
1072     func datafile
1073     funcfile x1 x2 .. xn transform
1074     0
1075     6+ red green blue rspec trans tspec A7 ..
1076     </pre>
1077    
1078     <p>
1079    
1080     <dt>
1081 greg 1.10 <a NAME="BSDF">
1082     <b>BSDF</b>
1083     </a>
1084    
1085     <dd>
1086     The BSDF material type loads an XML (eXtensible Markup Language)
1087     file describing a bidirectional scattering distribution function.
1088     Real arguments to this material may define additional
1089     diffuse components that augment the BSDF data.
1090     String arguments are used to define thickness for proxied
1091 greg 1.11 surfaces and the &quot;up&quot; orientation for the material.
1092 greg 1.10
1093     <pre>
1094     mod BSDF id
1095     6+ thick BSDFfile ux uy uz funcfile transform
1096     0
1097     0|3|6|9
1098     rfdif gfdif bfdif
1099     rbdif gbdif bbdif
1100     rtdif gtdif btdif
1101     </pre>
1102    
1103     <p>
1104 greg 1.11 The first string argument is a &quot;thickness&quot; parameter that may be used
1105 greg 1.10 to hide detail geometry being proxied by an aggregate BSDF material.
1106     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1107     it will pass directly through as if the surface were not there.
1108     Similar to the illum type, this permits direct viewing and
1109     shadow testing of complex geometry.
1110     The BSDF is used when a scattered (indirect) ray hits the surface,
1111     and any transmitted sample rays will be offset by the thickness amount
1112     to avoid the hidden geometry and gather samples from the other side.
1113     In this manner, BSDF surfaces can improve the results for indirect
1114     scattering from complex systems without sacrificing appearance or
1115     shadow accuracy.
1116     If the BSDF has transmission and back-side reflection data,
1117     a parallel BSDF surface may be
1118     placed slightly less than the given thickness away from the front surface
1119     to enclose the complex geometry on both sides.
1120 greg 1.12 The sign of the thickness is important, as it indicates
1121 greg 1.14 whether the proxied geometry is behind the BSDF
1122 greg 1.12 surface (when thickness is positive) or in front (when
1123     thickness is negative).
1124     <p>
1125     The second string argument is the name of the BSDF file,
1126     which is found in the usual auxiliary locations. The
1127     following three string parameters name variables for an
1128     &quot;up&quot; vector, which together with the surface
1129     normal, define the local coordinate system that orients the
1130     BSDF. These variables, along with the thickness, are defined
1131     in a function file given as the next string argument. An
1132     optional transform is used to scale the thickness and
1133     reorient the up vector.
1134     <p>
1135     If no real arguments are given, the BSDF is used by itself
1136     to determine reflection and transmission. If there are at
1137     least 3 real arguments, the first triplet is an additional
1138     diffuse reflectance for the front side. At least 6 real
1139     arguments adds diffuse reflectance to the rear side of the
1140     surface. If there are 9 real arguments, the final triplet
1141     will be taken as an additional diffuse transmittance. All
1142     diffuse components as well as the non-diffuse transmission
1143     are modified by patterns applied to this material. The
1144     non-diffuse reflection from either side are unaffected.
1145     Textures perturb the effective surface normal in the usual
1146     way.
1147     <p>
1148     The surface normal of this type is not altered to face the
1149     incoming ray, so the front and back BSDF reflections may
1150     differ. (Transmission is identical front-to-back by physical
1151     law.) If back visibility is turned off during rendering and
1152     there is no transmission or back-side reflection, only then
1153     the surface will be invisible from behind. Unlike other
1154     data-driven material types, the BSDF type is fully supported
1155     and all parts of the distribution are properly sampled.
1156 greg 1.10 <p>
1157    
1158     <dt>
1159 greg 1.26 <a NAME="aBSDF">
1160     <b>aBSDF</b>
1161 greg 1.25 </a>
1162    
1163     <dd>
1164 greg 1.26 The aBSDF material is identical to the BSDF type with two
1165 greg 1.25 important differences. First, proxy geometry is not
1166     supported, so there is no thickness parameter. Second, an
1167 greg 1.26 aBSDF is assumed to have some specular through component
1168     (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1169 greg 1.25 which is treated specially during the direct calculation
1170     and when viewing the material. Based on the BSDF data, the
1171     coefficient of specular transmission is determined and used
1172     for modifying unscattered shadow and view rays.
1173    
1174     <pre>
1175 greg 1.26 mod aBSDF id
1176 greg 1.25 5+ BSDFfile ux uy uz funcfile transform
1177     0
1178     0|3|6|9
1179     rfdif gfdif bfdif
1180     rbdif gbdif bbdif
1181     rtdif gtdif btdif
1182     </pre>
1183    
1184     <p>
1185     If a material has no specular transmitted component, it is
1186     much better to use the BSDF type with a zero thickness
1187 greg 1.26 than to use aBSDF.
1188 greg 1.25 <p>
1189    
1190     <dt>
1191 greg 1.1 <a NAME="Antimatter">
1192     <b>Antimatter</b>
1193     </a>
1194    
1195     <dd>
1196     Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1197     A ray passing into an antimatter object becomes blind to all the specified modifiers:
1198    
1199     <pre>
1200     mod antimatter id
1201     N mod1 mod2 .. modN
1202     0
1203     0
1204     </pre>
1205    
1206     The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1207     If mod1 is void, the antimatter volume is completely invisible.
1208     Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1209     and multiple antimatter surfaces should be disjoint.
1210     The viewpoint must be outside all volumes concerned for a correct rendering.
1211    
1212     </dl>
1213    
1214     <p>
1215     <hr>
1216    
1217     <h4>
1218     <a NAME="Textures">2.1.3. Textures</a>
1219     </h4>
1220    
1221     A texture is a perturbation of the surface normal, and is given by either a function or data.
1222    
1223     <p>
1224    
1225     <dl>
1226    
1227     <dt>
1228     <a NAME="Texfunc">
1229     <b>Texfunc</b>
1230     </a>
1231    
1232     <dd>
1233     A texfunc uses an auxiliary function file to specify a procedural texture:
1234    
1235     <pre>
1236     mod texfunc id
1237     4+ xpert ypert zpert funcfile transform
1238     0
1239     n A1 A2 .. An
1240     </pre>
1241    
1242     <p>
1243    
1244     <dt>
1245     <a NAME="Texdata">
1246     <b>Texdata</b>
1247     </a>
1248    
1249     <dd>
1250     A texdata texture uses three data files to get the surface normal perturbations.
1251     The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1252    
1253     <pre>
1254     mod texdata id
1255     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1256     0
1257     n A1 A2 .. An
1258     </pre>
1259    
1260     </dl>
1261    
1262     <p>
1263     <hr>
1264    
1265     <h4>
1266     <a NAME="Patterns">2.1.4. Patterns</a>
1267     </h4>
1268    
1269     Patterns are used to modify the reflectance of materials. The basic types are given below.
1270    
1271     <p>
1272    
1273     <dl>
1274    
1275     <dt>
1276     <a NAME="Colorfunc">
1277     <b>Colorfunc</b>
1278     </a>
1279    
1280     <dd>
1281     A colorfunc is a procedurally defined color pattern. It is specified as follows:
1282    
1283     <pre>
1284     mod colorfunc id
1285     4+ red green blue funcfile transform
1286     0
1287     n A1 A2 .. An
1288     </pre>
1289    
1290     <p>
1291    
1292     <dt>
1293     <a NAME="Brightfunc">
1294     <b>Brightfunc</b>
1295     </a>
1296    
1297     <dd>
1298     A brightfunc is the same as a colorfunc, except it is monochromatic.
1299    
1300     <pre>
1301     mod brightfunc id
1302     2+ refl funcfile transform
1303     0
1304     n A1 A2 .. An
1305     </pre>
1306    
1307     <p>
1308    
1309     <dt>
1310     <a NAME="Colordata">
1311     <b>Colordata</b>
1312     </a>
1313    
1314     <dd>
1315     Colordata uses an interpolated data map to modify a material's color.
1316     The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1317     The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1318     The interpolated data values are modified by functions of one or three variables.
1319     If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1320     If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1321    
1322     <pre>
1323     mod colordata id
1324     7+n+
1325     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1326     funcfile x1 x2 .. xn transform
1327     0
1328     m A1 A2 .. Am
1329     </pre>
1330    
1331     <p>
1332    
1333     <dt>
1334     <a NAME="Brightdata">
1335     <b>Brightdata</b>
1336     </a>
1337    
1338     <dd>
1339     Brightdata is like colordata, except monochromatic.
1340    
1341     <pre>
1342     mod brightdata id
1343     3+n+
1344     func datafile
1345     funcfile x1 x2 .. xn transform
1346     0
1347     m A1 A2 .. Am
1348     </pre>
1349    
1350     <p>
1351    
1352     <dt>
1353     <a NAME="Colorpict">
1354     <b>Colorpict</b>
1355     </a>
1356    
1357     <dd>
1358     Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1359     The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1360     and the other is the ratio between the larger and the smaller.
1361     For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1362    
1363     <pre>
1364     mod colorpict id
1365     7+
1366     rfunc gfunc bfunc pictfile
1367     funcfile u v transform
1368     0
1369     m A1 A2 .. Am
1370     </pre>
1371    
1372     <p>
1373    
1374     <dt>
1375     <a NAME="Colortext">
1376     <b>Colortext</b>
1377     </a>
1378    
1379     <dd>
1380     Colortext is dichromatic writing in a polygonal font.
1381     The font is defined in an auxiliary file, such as helvet.fnt.
1382     The text itself is also specified in a separate file, or can be part of the material arguments.
1383     The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1384     The upper left origin for the text block as well as the foreground and background colors must also be given.
1385    
1386     <pre>
1387     mod colortext id
1388     2 fontfile textfile
1389     0
1390     15+
1391     Ox Oy Oz
1392     Rx Ry Rz
1393     Dx Dy Dz
1394     rfore gfore bfore
1395     rback gback bback
1396     [spacing]
1397     </pre>
1398    
1399     or:
1400    
1401     <pre>
1402     mod colortext id
1403     2+N fontfile . This is a line with N words ...
1404     0
1405     15+
1406     Ox Oy Oz
1407     Rx Ry Rz
1408     Dx Dy Dz
1409     rfore gfore bfore
1410     rback gback bback
1411     [spacing]
1412     </pre>
1413    
1414     <p>
1415    
1416     <dt>
1417     <a NAME="Brighttext">
1418     <b>Brighttext</b>
1419     </a>
1420    
1421     <dd>
1422     Brighttext is like colortext, but the writing is monochromatic.
1423    
1424     <pre>
1425     mod brighttext id
1426     2 fontfile textfile
1427     0
1428     11+
1429     Ox Oy Oz
1430     Rx Ry Rz
1431     Dx Dy Dz
1432     foreground background
1433     [spacing]
1434     </pre>
1435    
1436     or:
1437    
1438     <pre>
1439     mod brighttext id
1440     2+N fontfile . This is a line with N words ...
1441     0
1442     11+
1443     Ox Oy Oz
1444     Rx Ry Rz
1445     Dx Dy Dz
1446     foreground background
1447     [spacing]
1448     </pre>
1449    
1450     <p>
1451    
1452     By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1453     Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1454     The optional spacing value defines the distance between characters for proportional spacing.
1455     A positive value selects a spacing algorithm that preserves right margins and indentation,
1456     but does not provide the ultimate in proportionally spaced text.
1457     A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1458     The choice depends on the relative importance of spacing versus formatting.
1459     When presenting a section of formatted text, a positive spacing value is usually preferred.
1460     A single line of text will often be accompanied by a negative spacing value.
1461     A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1462     Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1463    
1464 greg 1.33 <p>
1465    
1466     <dt>
1467     <a NAME="Spectrum">
1468     <b>Spectrum</b>
1469     </a>
1470    
1471     <dd>
1472     The spectrum primitive is the most basic type for introducing spectral
1473     color to a material.
1474     Since materials only provide RGB parameters, spectral patterns
1475     are the only way to superimpose wavelength-dependent behavior.
1476    
1477     <pre>
1478     mod spectrum id
1479     0
1480     0
1481     5+ nmA nmB s1 s2 .. sN
1482     </pre>
1483    
1484     <p>
1485     The first two real arguments indicate the limits of the covered
1486     spectral range in nanometers.
1487     Subsequent real values correspond to multipliers in each wavelength band,
1488     where the first band goes from nmA to nmA+(nmB-nmA)/N, and N is the
1489     number of bands (i.e., the number of real arguments minus 2).
1490 greg 1.34 The nmA wavelength may be greater or less than nmB,
1491     but they may not be equal, and their ordering matches
1492     the order of the spectral values.
1493 greg 1.33 A minimum of 3 values must be given, which would act
1494     more or less the same as a constant RGB multiplier.
1495     As with RGB values, spectral quantities normally range between 0
1496     and 1 at each wavelength, or average to 1.0 against a standard
1497     sensitivity functions such as V(lambda).
1498     The best results obtain when the spectral range and number
1499     of samples match rendering options, though resampling will handle
1500     any differences, zero-filling wavelenths outside the nmA to nmB
1501     range.
1502     A warning will be issued if the given wavelength range does not
1503     adequately cover the visible spectrum.
1504    
1505     <p>
1506    
1507     <dt>
1508     <a NAME="Specfile">
1509     <b>Specfile</b>
1510     </a>
1511    
1512     <dd>
1513     The specfile primitive is equivalent to the spectrum type, but
1514     the wavelength range and values are contained in a 1-dimensional
1515     data file.
1516     This may be a more convenient way to specify a spectral color,
1517     especially one corresponding to a standard illuminant such as D65
1518     or a library of measured spectra.
1519    
1520     <pre>
1521     mod specfile id
1522     1 datafile
1523     0
1524     0
1525     </pre>
1526    
1527     <p>
1528     As with the spectrum type, rendering wavelengths outside the defined
1529     range will be zero-filled.
1530     Unlike the spectrum type, the file may contain non-uniform samples.
1531    
1532     <p>
1533    
1534     <dt>
1535     <a NAME="Specfunc">
1536     <b>Specfunc</b>
1537     </a>
1538    
1539     <dd>
1540     The specfunc primitive offers dynamic control over a spectral
1541     pattern, similar to the colorfunc type.
1542    
1543     <pre>
1544     mod specfunc id
1545     2+ sval funcfile transform
1546     0
1547     2+ nmA nmB A3 ..
1548     </pre>
1549    
1550     <p>
1551     Like the spectrum primitive, the wavelength range is specified
1552     in the first two real arguments, and additional real values are
1553     accessible to the sval function.
1554     This function is fed a wavelenth sample
1555     between nmA and nmB as its only argument,
1556     and it returns the corresponding spectral intensity.
1557    
1558 greg 1.1 </dl>
1559    
1560     <p>
1561     <hr>
1562    
1563     <h4>
1564     <a NAME="Mixtures">2.1.5. Mixtures</a>
1565     </h4>
1566    
1567     A mixture is a blend of one or more materials or textures and patterns.
1568 greg 1.22 Blended materials should not be light source types or virtual source types.
1569 greg 1.1 The basic types are given below.
1570    
1571     <p>
1572    
1573     <dl>
1574    
1575     <dt>
1576     <a NAME="Mixfunc">
1577     <b>Mixfunc</b>
1578     </a>
1579    
1580     <dd>
1581     A mixfunc mixes two modifiers procedurally. It is specified as follows:
1582    
1583     <pre>
1584     mod mixfunc id
1585     4+ foreground background vname funcfile transform
1586     0
1587     n A1 A2 .. An
1588     </pre>
1589    
1590     Foreground and background are modifier names that must be
1591     defined earlier in the scene description.
1592     If one of these is a material, then
1593     the modifier of the mixfunc must be &quot;void&quot;.
1594     (Either the foreground or background modifier may be &quot;void&quot;,
1595     which serves as a form of opacity control when used with a material.)
1596     Vname is the coefficient defined in funcfile that determines the influence of foreground.
1597     The background coefficient is always (1-vname).
1598    
1599     <p>
1600    
1601     <dt>
1602     <a NAME="Mixdata">
1603     <b>Mixdata</b>
1604     </a>
1605    
1606     <dd>
1607     Mixdata combines two modifiers using an auxiliary data file:
1608    
1609     <pre>
1610     mod mixdata id
1611     5+n+
1612     foreground background func datafile
1613     funcfile x1 x2 .. xn transform
1614     0
1615     m A1 A2 .. Am
1616     </pre>
1617    
1618     <dt>
1619     <a NAME="Mixpict">
1620     <b>Mixpict</b>
1621     </a>
1622    
1623     <dd>
1624     Mixpict combines two modifiers based on a picture:
1625    
1626     <pre>
1627     mod mixpict id
1628     7+
1629     foreground background func pictfile
1630     funcfile u v transform
1631     0
1632     m A1 A2 .. Am
1633     </pre>
1634    
1635     <p>
1636    
1637     The mixing coefficient function &quot;func&quot; takes three
1638     arguments, the red, green and blue values
1639     corresponding to the pixel at (u,v).
1640    
1641     <p>
1642    
1643     <dt>
1644     <a NAME="Mixtext">
1645     <b>Mixtext</b>
1646     </a>
1647    
1648     <dd>
1649     Mixtext uses one modifier for the text foreground, and one for the background:
1650    
1651     <pre>
1652     mod mixtext id
1653     4 foreground background fontfile textfile
1654     0
1655     9+
1656     Ox Oy Oz
1657     Rx Ry Rz
1658     Dx Dy Dz
1659     [spacing]
1660     </pre>
1661    
1662     or:
1663    
1664     <pre>
1665     mod mixtext id
1666     4+N
1667     foreground background fontfile .
1668     This is a line with N words ...
1669     0
1670     9+
1671     Ox Oy Oz
1672     Rx Ry Rz
1673     Dx Dy Dz
1674     [spacing]
1675     </pre>
1676    
1677     </dl>
1678    
1679     <p>
1680     <hr>
1681    
1682     <h3>
1683     <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1684     </h3>
1685    
1686     Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1687     are accessed by the programs during image generation.
1688     These files may be located in the working directory, or in a library directory.
1689     The environment variable RAYPATH can be assigned an alternate set of search directories.
1690     Following is a brief description of some common file types.
1691    
1692     <p>
1693    
1694     <h4>
1695     <a NAME="Function">12.2.1. Function Files</a>
1696     </h4>
1697    
1698     A function file contains the definitions of variables, functions and constants used by a primitive.
1699     The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1700     to bring the coordinates of the function file into agreement with the world coordinates.
1701     The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1702     An example function file is given below:
1703    
1704     <pre>
1705     {
1706     This is a comment, enclosed in curly braces.
1707     {Comments can be nested.}
1708     }
1709     { standard expressions use +,-,*,/,^,(,) }
1710     vname = Ny * func(A1) ;
1711     { constants are defined with a colon }
1712     const : sqrt(PI/2) ;
1713     { user-defined functions add to library }
1714     func(x) = 5 + A1*sin(x/3) ;
1715     { functions may be passed and recursive }
1716     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1717     { constant functions may also be defined }
1718     cfunc(x) : 10*x / sqrt(x) ;
1719     </pre>
1720    
1721     Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1722     The following variables are particularly important:
1723    
1724     <pre>
1725     Dx, Dy, Dz - incident ray direction
1726     Nx, Ny, Nz - surface normal at intersection point
1727     Px, Py, Pz - intersection point
1728     T - distance from start
1729     Ts - single ray (shadow) distance
1730     Rdot - cosine between ray and normal
1731     arg(0) - number of real arguments
1732     arg(i) - i'th real argument
1733     </pre>
1734    
1735     For mesh objects, the local surface coordinates are available:
1736    
1737     <pre>
1738     Lu, Lv - local (u,v) coordinates
1739     </pre>
1740    
1741     For BRDF types, the following variables are defined as well:
1742    
1743     <pre>
1744     NxP, NyP, NzP - perturbed surface normal
1745     RdotP - perturbed dot product
1746     CrP, CgP, CbP - perturbed material color
1747     </pre>
1748    
1749     A unique context is set up for each file so
1750     that the same variable may appear in different
1751     function files without conflict.
1752     The variables listed above and any others defined in
1753     rayinit.cal are available globally.
1754     If no file is needed by a given primitive because all
1755     the required variables are global,
1756     a period (`.') can be given in place of the file name.
1757     It is also possible to give an expression instead
1758 greg 1.9 of a straight variable name in a scene file.
1759     Functions (requiring parameters) must be given
1760 greg 1.1 as names and not as expressions.
1761    
1762     <p>
1763     Constant expressions are used as an optimization in function files.
1764     They are replaced wherever they occur in an expression by their value.
1765     Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1766     such as the ray variables Px and Ny or the primitive argument function arg().
1767     All the math library functions such as sqrt() and cos() have the constant attribute,
1768     so they will be replaced by immediate values whenever they are given constant arguments.
1769     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1770     and does not cause any additional overhead in the calculation.
1771    
1772     <p>
1773     It is generally a good idea to define constants and variables before they are referred to in a function file.
1774     Although evaluation does not take place until later, the interpreter does variable scoping and
1775     constant subexpression evaluation based on what it has compiled already.
1776     For example, a variable that is defined globally in rayinit.cal
1777     then referenced in the local context of a function file
1778     cannot subsequently be redefined in the same file
1779     because the compiler has already determined the scope of the referenced variable as global.
1780     To avoid such conflicts, one can state the scope of a variable explicitly by
1781     preceding the variable name with a context mark (a back-quote) for a local variable,
1782     or following the name with a context mark for a global variable.
1783    
1784     <p>
1785    
1786     <h4>
1787     <a NAME="Data">2.2.2. Data Files</a>
1788     </h4>
1789    
1790     Data files contain n-dimensional arrays of real numbers used for interpolation.
1791     Typically, definitions in a function file determine how to index and use interpolated data values.
1792     The basic data file format is as follows:
1793    
1794     <pre>
1795     N
1796     beg1 end1 m1
1797     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1798     ...
1799     begN endN mN
1800     DATA, later dimensions changing faster.
1801     </pre>
1802    
1803     N is the number of dimensions.
1804     For each dimension, the beginning and ending coordinate values and the dimension size is given.
1805     Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1806     These values must either be increasing or decreasing monotonically.
1807     The data is m1*m2*...*mN real numbers in ASCII form.
1808     Comments may appear anywhere in the file, beginning with a pound
1809     sign ('#') and continuing to the end of line.
1810    
1811     <p>
1812    
1813     <h4>
1814     <a NAME="Font">2.2.3. Font Files</a>
1815     </h4>
1816    
1817     A font file lists the polygons which make up a character set.
1818     Comments may appear anywhere in the file, beginning with a pound
1819     sign ('#') and continuing to the end of line.
1820     All numbers are decimal integers:
1821    
1822     <pre>
1823     code n
1824     x0 y0
1825     x1 y1
1826     ...
1827     xn yn
1828     ...
1829     </pre>
1830    
1831     The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
1832     Separate polygonal sections are joined by coincident sides.
1833     The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
1834    
1835     <p>
1836    
1837     <hr>
1838    
1839     <h3>
1840     <a NAME="Generators">2.3. Generators</a>
1841     </h3>
1842    
1843     A generator is any program that produces a scene description as its output.
1844     They usually appear as commands in a scene description file.
1845     An example of a simple generator is genbox.
1846    
1847     <ul>
1848    
1849     <li>
1850     <a NAME="Genbox" HREF="../man_html/genbox.1.html">
1851     <b>Genbox</b>
1852     </a>
1853     takes the arguments of width, height and depth to produce a parallelepiped description.
1854     <li>
1855     <a NAME="Genprism" HREF="../man_html/genprism.1.html">
1856     <b>Genprism</b>
1857     </a>
1858     takes a list of 2-dimensional coordinates and extrudes them along a vector to
1859     produce a 3-dimensional prism.
1860     <li>
1861     <a NAME="Genrev" HREF="../man_html/genrev.1.html">
1862     <b>Genrev</b>
1863     </a>
1864     is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
1865     <li>
1866     <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
1867     <b>Gensurf</b>
1868     </a>
1869     tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
1870     <li>
1871     <a NAME="Genworm" HREF="../man_html/genworm.1.html">
1872     <b>Genworm</b>
1873     </a>
1874     links cylinders and spheres along a curve.
1875     <li>
1876     <a NAME="Gensky" HREF="../man_html/gensky.1.html">
1877     <b>Gensky</b>
1878     </a>
1879     produces a sun and sky distribution corresponding to a given time and date.
1880     <li>
1881     <a NAME="Xform" HREF="../man_html/xform.1.html">
1882     <b>Xform</b>
1883     </a>
1884     is a program that transforms a scene description from one coordinate space to another.
1885     Xform does rotation, translation, scaling, and mirroring.
1886    
1887     </ul>
1888    
1889     <p>
1890     <hr>
1891    
1892     <h2>
1893     <a NAME="Image">3. Image Generation</a>
1894     </h2>
1895    
1896     Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
1897    
1898     <p>
1899     The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
1900     An octree subdivides space into nested octants which contain sets of surfaces.
1901     In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
1902     The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
1903     directs the use of a scene description.
1904     <ul>
1905     <li>
1906 greg 1.30 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a> is ray-tracing program for viewing a scene interactively.
1907 greg 1.3 When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
1908 greg 1.1 then progressively increases the resolution as the user looks on.
1909     He can select a particular section of the image to improve, or move to a different view and start over.
1910     This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
1911    
1912     <li>
1913     <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
1914     This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
1915     </ul>
1916     <p>
1917     A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
1918     <ul>
1919     <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
1920     sets the exposure and performs antialiasing.
1921     <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
1922     composites (cuts and pastes) pictures.
1923     <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
1924     performs arbitrary math on one or more pictures.
1925     <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
1926     conditions a picture for a specific display device.
1927     <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
1928     rotates a picture 90 degrees clockwise.
1929     <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
1930     flips a picture horizontally, vertically, or both
1931     (180 degree rotation).
1932     <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
1933     converts a picture to and from simpler formats.
1934     </ul>
1935    
1936     <p>
1937     Pictures may be displayed directly under X11 using the program
1938     <a HREF="../man_html/ximage.1.html">ximage</a>,
1939     or converted a standard image format using one of the following
1940     <b>translators</b>:
1941     <ul>
1942 greg 1.30 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
1943 greg 1.19 converts to and from BMP image format.
1944 greg 1.1 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1945     converts to and from Poskanzer Portable Pixmap formats.
1946     <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1947     converts to PostScript color and greyscale formats.
1948     <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
1949     converts to and from Radiance uncompressed picture format.
1950     <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
1951     converts to and from Targa 16 and 24-bit image formats.
1952     <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
1953     converts to and from Targa 8-bit image format.
1954     <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
1955     converts to and from TIFF.
1956     <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
1957     converts to and from Radiance CIE picture format.
1958     </ul>
1959    
1960     <p>
1961    
1962     <hr>
1963    
1964     <h2>
1965     <a NAME="License">4. License</a>
1966     </h2>
1967    
1968     <pre>
1969     The Radiance Software License, Version 1.0
1970    
1971 greg 1.30 Copyright (c) 1990 - 2021 The Regents of the University of California,
1972 greg 1.1 through Lawrence Berkeley National Laboratory. All rights reserved.
1973    
1974     Redistribution and use in source and binary forms, with or without
1975     modification, are permitted provided that the following conditions
1976     are met:
1977    
1978     1. Redistributions of source code must retain the above copyright
1979     notice, this list of conditions and the following disclaimer.
1980    
1981     2. Redistributions in binary form must reproduce the above copyright
1982     notice, this list of conditions and the following disclaimer in
1983     the documentation and/or other materials provided with the
1984     distribution.
1985    
1986     3. The end-user documentation included with the redistribution,
1987     if any, must include the following acknowledgment:
1988     &quot;This product includes Radiance software
1989     (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
1990     developed by the Lawrence Berkeley National Laboratory
1991     (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
1992     Alternately, this acknowledgment may appear in the software itself,
1993     if and wherever such third-party acknowledgments normally appear.
1994    
1995     4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
1996     and &quot;The Regents of the University of California&quot; must
1997     not be used to endorse or promote products derived from this
1998     software without prior written permission. For written
1999     permission, please contact [email protected].
2000    
2001     5. Products derived from this software may not be called &quot;Radiance&quot;,
2002     nor may &quot;Radiance&quot; appear in their name, without prior written
2003     permission of Lawrence Berkeley National Laboratory.
2004    
2005 greg 1.15 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
2006 greg 1.1 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
2007     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
2008     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
2009     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2010     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2011     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
2012     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2013     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2014     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
2015     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2016     SUCH DAMAGE.
2017     </pre>
2018    
2019     <hr>
2020    
2021     <h2>
2022     <a NAME="Ack">5. Acknowledgements</a>
2023     </h2>
2024    
2025     This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
2026     Office of Building Energy Research and Development,
2027     Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
2028    
2029     <p>
2030     Additional work was sponsored by the Swiss federal government
2031     under the Swiss LUMEN Project and was carried out in the
2032     Laboratoire d'Energie Solaire (LESO Group) at the
2033     Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
2034    
2035     <p>
2036    
2037     <hr>
2038    
2039     <h2>
2040     <a NAME="Ref">6.</a> References
2041     </h2>
2042     <p>
2043     <ul>
2044 greg 1.32 <li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
2045     Lars O. Grobe, Jacob C. Jonsson, Eleanor
2046     S. Lee, Taoning Wang, Helen Rose Wilson,
2047     &quot;<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight
2048     Simulation Workflows Incorporating Measured Bidirectional
2049     Scattering Distribution Functions</a>&quot;
2050     <em>Energy &amp; Buildings</em>, Vol. 259, No. 11890, 2022.
2051 greg 1.27 <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
2052     &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
2053     modeling of optically-complex, non-coplanar exterior shading:
2054     Validation of matrix algebraic methods</a>&quot;
2055     <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
2056     <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
2057     &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
2058     the direct sun component in buildings using matrix
2059     algebraic approaches: Methods and
2060     validation</a>,&quot; <em>Solar Energy</em>,
2061     vol. 160, 15 January 2018, pp 380-395.
2062     <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
2063     Gregory J. Ward, Marty Banks, James F. O'Brien,
2064     &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
2065     Presentation of Imagery with Focus
2066     Cues on Multi-Plane Displays</a>,&quot;
2067     <em>SIGGRAPH 2015</em>.
2068     <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
2069     &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
2070     Anisotropic BSDF Measurement to Common Practice</a>,&quot;
2071     <em>Workshop on Material Appearance Modeling</em>, 2014.
2072     <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
2073     James F. O'Brien, Gregory Ward,
2074     &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
2075     Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
2076     <em>VSS 2014</em>.
2077 greg 1.19 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
2078     &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
2079     A validation of a ray-tracing tool used to generate
2080     bi-directional scattering distribution functions for
2081     complex fenestration systems</a>,&quot;
2082     <em>Solar Energy</em>, 98, 404-14,
2083     November 2013.
2084 greg 1.15 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
2085 greg 1.17 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
2086     the Daylight Performance of Complex Fenestration Systems
2087     Using Bidirectional Scattering Distribution Functions within
2088     Radiance</a>,&quot;
2089 greg 1.18 <em>Leukos</em>, 7(4)
2090 greg 1.15 April 2011.
2091 greg 1.7 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
2092 greg 1.9 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
2093 greg 1.7 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
2094     <em>Eurographics Symposium
2095     on Rendering 2003</em>, June 2003.
2096 greg 1.1 <li>Ward, Greg, Elena Eydelberg-Vileshin,
2097 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
2098     Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
2099 greg 1.1 Thirteenth Eurographics Workshop on Rendering (2002),
2100     P. Debevec and S. Gibson (Editors), June 2002.
2101     <li>Ward, Gregory,
2102 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2103 greg 1.1 Proceedings of the Ninth Color Imaging Conference, November 2001.
2104     <li>Ward, Gregory and Maryann Simmons,
2105 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2106 greg 1.1 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2107 greg 1.15 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2108     <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2109     Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2110 greg 1.1 Eurographics Workshop on Parallel Graphics and Visualisation,
2111     September 1998.
2112     <li>Larson, G.W. and R.A. Shakespeare,
2113 greg 1.2 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
2114 greg 1.1 the Art and Science of Lighting Visualization</em></a>,
2115     Morgan Kaufmann Publishers, 1998.
2116     <li>Larson, G.W., H. Rushmeier, C. Piatko,
2117 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2118 greg 1.1 Matching Tone Reproduction Operator for
2119 greg 1.15 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2120 greg 1.1 January 1997.
2121 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2122     Global Illumination User-Friendly</a>,&quot; Sixth
2123 greg 1.1 Eurographics Workshop on Rendering, Springer-Verlag,
2124     Dublin, Ireland, June 1995.</li>
2125     <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2126 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2127 greg 1.1 Comparing Real and Synthetic Images: Some Ideas about
2128 greg 1.15 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2129 greg 1.1 Springer-Verlag, Dublin, Ireland, June 1995.</li>
2130 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2131     Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2132 greg 1.1 Graphics</em>, July 1994.</li>
2133 greg 1.15 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2134     Preserving Non-Linear Filters</a>,&quot; <em>Computer
2135 greg 1.1 Graphics</em>, July 1994.</li>
2136 greg 1.15 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2137     Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2138 greg 1.1 Academic Press 1994.</li>
2139 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2140     Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2141 greg 1.1 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2142 greg 1.15 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2143     Gradients</a>,&quot; Third Annual Eurographics Workshop on
2144 greg 1.1 Rendering, Springer-Verlag, May 1992. </li>
2145 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2146     Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2147 greg 1.1 Computer Graphics, proceedings of 1991 Eurographics
2148     Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2149     Springer-Verlag. </li>
2150 greg 1.15 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2151 greg 1.1 Application</em>, Vol. 20, No. 6, June 1990. </li>
2152 greg 1.15 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2153     Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2154 greg 1.1 Vol. 22, No. 4, August 1988. </li>
2155 greg 1.15 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2156     Simulation of Illuminated Spaces,&quot; <em>Journal of the
2157 greg 1.1 Illuminating Engineering Society</em>, Vol. 17, No. 1,
2158     Winter 1988. </li>
2159     </ul>
2160     <p>
2161     See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2162     for additional information.
2163     <hr>
2164    
2165     <a NAME="Index"><h2>7. Types Index</h2></a>
2166    
2167     <pre>
2168     <h4>
2169     SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2170     <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2171     <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2172     <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2173     <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2174     <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2175     <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2176     <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2177     <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2178     <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2179     <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2180     <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2181     <a HREF="#Metal2">Metal2</a>
2182     <a HREF="#Trans2">Trans2</a>
2183     <a HREF="#Mist">Mist</a>
2184     <a HREF="#Dielectric">Dielectric</a>
2185     <a HREF="#Interface">Interface</a>
2186     <a HREF="#Glass">Glass</a>
2187     <a HREF="#Plasfunc">Plasfunc</a>
2188     <a HREF="#Metfunc">Metfunc</a>
2189     <a HREF="#Transfunc">Transfunc</a>
2190     <a HREF="#BRTDfunc">BRTDfunc</a>
2191     <a HREF="#Plasdata">Plasdata</a>
2192     <a HREF="#Metdata">Metdata</a>
2193     <a HREF="#Transdata">Transdata</a>
2194 greg 1.10 <a HREF="#BSDF">BSDF</a>
2195 greg 1.1 <a HREF="#Antimatter">Antimatter</a>
2196    
2197     </pre>
2198    
2199     <p>
2200    
2201    
2202     <hr>
2203     <center>Last Update: October 22, 1997</center>
2204     </body>
2205     </html>
2206