ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/man/man1/rtrace.1
Revision: 1.43
Committed: Fri Jun 27 15:19:58 2025 UTC (3 days, 4 hours ago) by greg
Branch: MAIN
CVS Tags: HEAD
Changes since 1.42: +8 -4 lines
Log Message:
docs(rpict,rtrace): Clarified -f and -e options

File Contents

# User Rev Content
1 greg 1.43 .\" RCSid "$Id: rtrace.1,v 1.42 2025/04/23 15:09:03 greg Exp $"
2 greg 1.1 .TH RTRACE 1 10/17/97 RADIANCE
3     .SH NAME
4     rtrace - trace rays in RADIANCE scene
5     .SH SYNOPSIS
6     .B rtrace
7     [
8     .B options
9     ]
10     [
11     .B $EVAR
12     ]
13     [
14     .B @file
15     ]
16     .B octree
17     .br
18     .B "rtrace [ options ] \-defaults"
19 greg 1.36 .br
20     .B "rtrace \-features [feat1 ..]"
21 greg 1.1 .SH DESCRIPTION
22     .I Rtrace
23     traces rays from the standard input through the RADIANCE scene given by
24     .I octree
25     and sends the results to the standard output.
26     (The octree may be given as the output of a command enclosed in quotes
27     and preceded by a `!'.)\0
28     Input for each ray is:
29    
30     xorg yorg zorg xdir ydir zdir
31    
32     If the direction vector is (0,0,0), a bogus record
33     is printed and the output is flushed if the
34     .I -x
35 greg 1.24 value is one or zero.
36 greg 1.1 (See the notes on this option below.)\0
37     This may be useful for programs that run
38     .I rtrace
39     as a separate process.
40 greg 1.36 .PP
41     In the second form shown above, the default values
42 greg 1.1 for the options (modified by those options present)
43     are printed with a brief explanation.
44     .PP
45 greg 1.36 In the third form, a list of supported features is sent
46     to the standard output, one per line.
47     If additional arguments follow, they are checked for presence in
48     this list.
49     If a feature includes subfeatures, these may be checked as well by
50     specifying:
51     .nf
52    
53     rtrace -features FeatName=subfeat1,subfeat2
54    
55     .fi
56     If any named feature or subfeature is missing, an error is
57     reported and the program returns an error status.
58     If all of the named features are present, a zero status is returned.
59     .PP
60 greg 1.1 Options may be given on the command line and/or read from the
61     environment and/or read from a file.
62     A command argument beginning with a dollar sign ('$') is immediately
63     replaced by the contents of the given environment variable.
64     A command argument beginning with an at sign ('@') is immediately
65     replaced by the contents of the given file.
66     Most options are followed by one or more arguments, which must be
67     separated from the option and each other by white space.
68     The exceptions to this rule are the boolean options.
69     Normally, the appearance of a boolean option causes a feature to
70     be "toggled", that is switched from off to on or on to off
71     depending on its previous state.
72     Boolean options may also be set
73     explicitly by following them immediately with a '+' or '-', meaning
74     on or off, respectively.
75     Synonyms for '+' are any of the characters "yYtT1", and synonyms
76     for '-' are any of the characters "nNfF0".
77     All other characters will generate an error.
78     .TP 10n
79     .BI -f io
80     Format input according to the character
81     .I i
82     and output according to the character
83     .I o.
84     .I Rtrace
85     understands the following input and output formats: 'a' for
86     ascii, 'f' for single-precision floating point,
87     and 'd' for double-precision floating point.
88     In addition to these three choices, the character 'c' may be used
89 greg 1.33 to denote 4-byte RGBE (Radiance) color format
90     for the output of individual color values only, and the
91     .I \-x
92     and
93     .I \-y
94     options should also be specified to create a valid output picture.
95 greg 1.1 If the output character is missing, the input format is used.
96     .IP
97     Note that there is no space between this option and its argument.
98     .TP
99     .BI -o spec
100     Produce output fields according to
101     .I spec.
102     Characters are interpreted as follows:
103     .IP
104     o origin (input)
105     .IP
106     d direction (normalized)
107     .IP
108     v value (radiance)
109     .IP
110 greg 1.14 V contribution (radiance)
111     .IP
112 greg 1.1 w weight
113     .IP
114 greg 1.10 W color coefficient
115 greg 1.7 .IP
116 greg 1.1 l effective length of ray
117     .IP
118     L first intersection distance
119     .IP
120 greg 1.2 c local (u,v) coordinates
121     .IP
122 greg 1.1 p point of intersection
123     .IP
124     n normal at intersection (perturbed)
125     .IP
126     N normal at intersection (unperturbed)
127     .IP
128     s surface name
129     .IP
130     m modifier name
131     .IP
132 greg 1.6 M material name
133     .IP
134 greg 1.31 r mirrored value contribution
135     .IP
136     x unmirrored value contribution
137     .IP
138     R mirrored ray length
139     .IP
140     X unmirrored ray length
141     .IP
142 greg 1.9 ~ tilde (end of trace marker)
143 greg 1.8 .IP
144 greg 1.1 If the letter 't' appears in
145     .I spec,
146     then the fields following will be printed for every ray traced,
147     not just the final result.
148 greg 1.7 If the capital letter 'T' is given instead of 't', then all rays will
149     be reported, including shadow testing rays to light sources.
150 greg 1.1 Spawned rays are indented one tab for each level.
151 greg 1.9 The tilde marker ('~') is a handy way of differentiating the final ray
152     value from daughter values in a traced ray tree, and usually appears
153     right before the 't' or 'T' output flags.
154 greg 1.8 E.g.,
155 greg 1.9 .I \-ov~TmW
156     will emit a tilde followed by a tab at the end of each trace,
157     which can be easily distinguished even in binary output.
158 greg 1.1 .IP
159     Note that there is no space between this option and its argument.
160     .TP
161 greg 1.6 .BI -te \ mod
162 greg 1.1 Append
163 greg 1.6 .I mod
164 greg 1.1 to the trace exclude list,
165     so that it will not be reported by the trace option
166     .I (\-o*t*).
167     Any ray striking an object having
168 greg 1.6 .I mod
169 greg 1.1 as its modifier will not be reported to the standard output with
170     the rest of the rays being traced.
171 greg 1.7 This option has no effect unless either the 't' or 'T'
172     option has been given as part of the output specifier.
173 greg 1.6 Any number of excluded modifiers may be given, but each
174 greg 1.1 must appear in a separate option.
175     .TP
176 greg 1.6 .BI -ti \ mod
177 greg 1.1 Add
178 greg 1.6 .I mod
179 greg 1.1 to the trace include list,
180 greg 1.8 so that it will be reported by the trace option.
181 greg 1.1 The program can use either an include list or an exclude
182     list, but not both.
183     .TP
184     .BI -tE \ file
185     Same as
186     .I \-te,
187 greg 1.6 except read modifiers to be excluded from
188 greg 1.1 .I file.
189     The RAYPATH environment variable determines which directories are
190     searched for this file.
191 greg 1.6 The modifier names are separated by white space in the file.
192 greg 1.1 .TP
193     .BI -tI \ file
194     Same as
195     .I \-ti,
196 greg 1.6 except read modifiers to be included from
197 greg 1.1 .I file.
198     .TP
199     .BR \-i
200     Boolean switch to compute irradiance rather than radiance values.
201     This only affects the final result, substituting a Lambertian
202     surface and multiplying the radiance by pi.
203     Glass and other transparent surfaces are ignored during this stage.
204     Light sources still appear with their original radiance values,
205     though the
206     .I \-dv
207     option (below) may be used to override this.
208     This option is especially useful in
209 greg 1.35 conjunction with ximage(1) for computing irradiance at scene points.
210 greg 1.1 .TP
211 greg 1.13 .BR \-u
212     Boolean switch to control uncorrelated random sampling.
213 greg 1.12 When "off", a low-discrepancy sequence is used, which reduces
214     variance but can result in a brushed appearance in specular highlights.
215     When "on", pure Monte Carlo sampling is used in all calculations.
216     .TP
217 greg 1.1 .BR \-I
218     Boolean switch to compute irradiance rather than radiance,
219     with the input origin and direction interpreted instead
220     as measurement point and orientation.
221     .TP
222     .BR \-h
223     Boolean switch for information header on output.
224     .TP
225     .BI -x \ res
226     Set the x resolution to
227     .I res.
228     The output will be flushed after every
229     .I res
230 greg 1.21 input rays if
231     .I \-y
232     is set to zero.
233     A value of one means that every ray will be flushed, whatever
234     the setting of
235     .I \-y.
236 greg 1.1 A value of zero means that no output flushing will take place.
237     .TP
238     .BI -y \ res
239     Set the y resolution to
240     .I res.
241     The program will exit after
242     .I res
243     scanlines have been processed, where a scanline is the number of rays
244     given by the
245     .I \-x
246     option, or 1 if
247     .I \-x
248     is zero.
249     A value of zero means the program will not halt until the end
250     of file is reached.
251     .IP
252     If both
253     .I \-x
254     and
255     .I \-y
256     options are given, a resolution string is printed at the beginning
257     of the output.
258     This is mostly useful for recovering image dimensions with
259     .I pvalue(1),
260     and for creating valid Radiance picture files using the color output
261     format.
262     (See the
263 greg 1.41 .I \-f\*
264 greg 1.1 option, above.)
265     .TP
266 greg 1.18 .BI -n \ nproc
267     Execute in parallel on
268     .I nproc
269     local processes.
270 greg 1.19 This option is incompatible with the
271 greg 1.18 .I \-P
272     and
273     .I \-PP,
274 greg 1.19 options.
275 greg 1.18 Multiple processes also do not work properly with ray tree output
276     using any of the
277     .I \-o*t*
278     options.
279     There is no benefit from specifying more processes than there are
280     cores available on the system or the
281     .I \-x
282     setting, which forces a wait at each flush.
283     .TP
284 greg 1.41 .BI -f \ source
285 greg 1.43 Load function and variable definitions from the file
286 greg 1.41 .I source
287 greg 1.42 and assign at the global level.
288 greg 1.43 This may be convenient for altering material appearance on a per-run basis.
289 greg 1.42 The usual set of library directories is searched based on the
290     .I RAYPATH
291     environment variable.
292 greg 1.43 These file definitions will override same-named variables
293     and functions in "rayinit.cal".
294 greg 1.41 .TP
295     .BI -e \ expr
296 greg 1.43 Set initial definitions from
297     .I expr,
298     which may include constant assignments with the ':' character.
299 greg 1.41 .TP
300 greg 1.1 .BI -dj \ frac
301     Set the direct jittering to
302     .I frac.
303     A value of zero samples each source at specific sample points
304     (see the
305     .I \-ds
306     option below), giving a smoother but somewhat less accurate
307     rendering.
308     A positive value causes rays to be distributed over each
309     source sample according to its size, resulting in more accurate
310     penumbras.
311     This option should never be greater than 1, and may even
312     cause problems (such as speckle) when the value is smaller.
313     A warning about aiming failure will issued if
314     .I frac
315     is too large.
316     .TP
317     .BI -ds \ frac
318     Set the direct sampling ratio to
319     .I frac.
320     A light source will be subdivided until
321     the width of each sample area divided by the distance
322     to the illuminated point is below this ratio.
323     This assures accuracy in regions close to large area sources
324     at a slight computational expense.
325     A value of zero turns source subdivision off, sending at most one
326     shadow ray to each light source.
327     .TP
328     .BI -dt \ frac
329     Set the direct threshold to
330     .I frac.
331     Shadow testing will stop when the potential contribution of at least
332     the next and at most all remaining light sources is less than
333     this fraction of the accumulated value.
334     (See the
335     .I \-dc
336     option below.)
337     The remaining light source contributions are approximated
338     statistically.
339     A value of zero means that all light sources will be tested for shadow.
340     .TP
341     .BI \-dc \ frac
342     Set the direct certainty to
343     .I frac.
344     A value of one guarantees that the absolute accuracy of the direct calculation
345     will be equal to or better than that given in the
346     .I \-dt
347     specification.
348     A value of zero only insures that all shadow lines resulting in a contrast
349     change greater than the
350     .I \-dt
351     specification will be calculated.
352     .TP
353     .BI -dr \ N
354 greg 1.35 Set the number of relays for virtual sources to
355 greg 1.1 .I N.
356 greg 1.35 A value of 0 means that virtual sources will be ignored.
357 greg 1.1 A value of 1 means that sources will be made into first generation
358 greg 1.35 virtual sources; a value of 2 means that first generation
359     virtual sources will also be made into second generation virtual
360 greg 1.1 sources, and so on.
361     .TP
362     .BI -dp \ D
363 greg 1.35 Set the virtual source presampling density to D.
364 greg 1.1 This is the number of samples per steradian
365     that will be used to determine ahead of time whether or not
366     it is worth following shadow rays through all the reflections and/or
367 greg 1.35 transmissions associated with a virtual source path.
368     A value of 0 means that the full virtual source path will always
369 greg 1.1 be tested for shadows if it is tested at all.
370     .TP
371     .BR \-dv
372     Boolean switch for light source visibility.
373     With this switch off, sources will be black when viewed directly
374     although they will still participate in the direct calculation.
375     This option is mostly for the program
376     .I mkillum(1)
377     to avoid inappropriate counting of light sources, but it
378     may also be desirable in conjunction with the
379     .I \-i
380     option.
381     .TP
382 greg 1.22 .BI -ss \ samp
383     Set the specular sampling to
384     .I samp.
385     For values less than 1, this is the degree to which the highlights
386     are sampled for rough specular materials.
387     A value greater than one causes multiple ray samples to be sent
388     to reduce noise at a commmesurate cost.
389 greg 1.1 A value of zero means that no jittering will take place, and all
390     reflections will appear sharp even when they should be diffuse.
391     .TP
392     .BI -st \ frac
393     Set the specular sampling threshold to
394     .I frac.
395     This is the minimum fraction of reflection or transmission, under which
396     no specular sampling is performed.
397     A value of zero means that highlights will always be sampled by
398     tracing reflected or transmitted rays.
399     A value of one means that specular sampling is never used.
400     Highlights from light sources will always be correct, but
401     reflections from other surfaces will be approximated using an
402     ambient value.
403     A sampling threshold between zero and one offers a compromise between image
404     accuracy and rendering time.
405     .TP
406     .BR -bv
407     Boolean switch for back face visibility.
408 greg 1.25 With this switch off, back faces of all objects will be invisible
409     to view rays.
410 greg 1.1 This is dangerous unless the model was constructed such that
411 greg 1.25 all surface normals face outward.
412 greg 1.1 Although turning off back face visibility does not save much
413     computation time under most circumstances, it may be useful as a
414     tool for scene debugging, or for seeing through one-sided walls from
415     the outside.
416     .TP
417     .BI -av " red grn blu"
418     Set the ambient value to a radiance of
419     .I "red grn blu".
420     This is the final value used in place of an
421     indirect light calculation.
422     If the number of ambient bounces is one or greater and the ambient
423     value weight is non-zero (see
424     .I -aw
425     and
426     .I -ab
427     below), this value may be modified by the computed indirect values
428     to improve overall accuracy.
429     .TP
430     .BI -aw \ N
431     Set the relative weight of the ambient value given with the
432     .I -av
433     option to
434     .I N.
435     As new indirect irradiances are computed, they will modify the
436     default ambient value in a moving average, with the specified weight
437     assigned to the initial value given on the command and all other
438     weights set to 1.
439     If a value of 0 is given with this option, then the initial ambient
440     value is never modified.
441     This is the safest value for scenes with large differences in
442     indirect contributions, such as when both indoor and outdoor
443     (daylight) areas are visible.
444     .TP
445     .BI -ab \ N
446     Set the number of ambient bounces to
447     .I N.
448 greg 1.26 This is the maximum number of diffuse bounces computed by the indirect
449     calculation. A value of zero implies no indirect calculation.
450     .IP
451 rschregle 1.27 This value defaults to 1 in photon mapping mode (see
452 greg 1.26 .I -ap
453 rschregle 1.27 below), implying that global photon irradiance is always computed via
454 greg 1.26 .I one
455 rschregle 1.27 ambient bounce; this behaviour applies to any positive number of ambient
456     bounces, regardless of the actual value specified. A negative value enables
457     a preview mode that directly visualises the irradiance from the global
458     photon map without any ambient bounces.
459 greg 1.1 .TP
460     .BI -ar \ res
461     Set the ambient resolution to
462     .I res.
463     This number will determine the maximum density of ambient values
464     used in interpolation.
465     Error will start to increase on surfaces spaced closer than
466     the scene size divided by the ambient resolution.
467     The maximum ambient value density is the scene size times the
468     ambient accuracy (see the
469     .I \-aa
470     option below) divided by the ambient resolution.
471     The scene size can be determined using
472     .I getinfo(1)
473     with the
474     .I \-d
475     option on the input octree.
476     .TP
477     .BI -aa \ acc
478     Set the ambient accuracy to
479     .I acc.
480     This value will approximately equal the error
481 greg 1.35 from indirect irradiance interpolation.
482 greg 1.1 A value of zero implies no interpolation.
483     .TP
484     .BI -ad \ N
485     Set the number of ambient divisions to
486     .I N.
487     The error in the Monte Carlo calculation of indirect
488 greg 1.35 irradiance will be inversely proportional to the square
489 greg 1.1 root of this number.
490     A value of zero implies no indirect calculation.
491     .TP
492     .BI -as \ N
493     Set the number of ambient super-samples to
494     .I N.
495     Super-samples are applied only to the ambient divisions which
496     show a significant change.
497     .TP
498     .BI -af \ fname
499     Set the ambient file to
500     .I fname.
501 greg 1.35 This is where indirect irradiance will be stored and retrieved.
502     Normally, indirect irradiance values are kept in memory and
503 greg 1.1 lost when the program finishes or dies.
504 greg 1.35 By using a file, different invocations can share irradiance
505 greg 1.1 values, saving time in the computation.
506     The ambient file is in a machine-independent binary format
507     which can be examined with
508     .I lookamb(1).
509     .IP
510     The ambient file may also be used as a means of communication and
511     data sharing between simultaneously executing processes.
512     The same file may be used by multiple processes, possibly running on
513     different machines and accessing the file via the network (ie.
514     .I nfs(4)).
515     The network lock manager
516     .I lockd(8)
517     is used to insure that this information is used consistently.
518     .IP
519     If any calculation parameters are changed or the scene
520     is modified, the old ambient file should be removed so that
521     the calculation can start over from scratch.
522     For convenience, the original ambient parameters are listed in the
523     header of the ambient file.
524     .I Getinfo(1)
525     may be used to print out this information.
526     .TP
527 greg 1.6 .BI -ae \ mod
528 greg 1.1 Append
529 greg 1.6 .I mod
530 greg 1.1 to the ambient exclude list,
531     so that it will not be considered during the indirect calculation.
532     This is a hack for speeding the indirect computation by
533     ignoring certain objects.
534     Any object having
535 greg 1.6 .I mod
536 greg 1.1 as its modifier will get the default ambient
537     level rather than a calculated value.
538 greg 1.6 Any number of excluded modifiers may be given, but each
539 greg 1.1 must appear in a separate option.
540     .TP
541 greg 1.6 .BI -ai \ mod
542 greg 1.1 Add
543 greg 1.6 .I mod
544 greg 1.1 to the ambient include list,
545     so that it will be considered during the indirect calculation.
546     The program can use either an include list or an exclude
547     list, but not both.
548     .TP
549     .BI -aE \ file
550     Same as
551     .I \-ae,
552 greg 1.6 except read modifiers to be excluded from
553 greg 1.1 .I file.
554     The RAYPATH environment variable determines which directories are
555     searched for this file.
556 greg 1.6 The modifier names are separated by white space in the file.
557 greg 1.1 .TP
558     .BI -aI \ file
559     Same as
560     .I \-ai,
561 greg 1.6 except read modifiers to be included from
562 greg 1.1 .I file.
563     .TP
564 greg 1.26 .BI -ap " file [bwidth1 [bwidth2]]"
565     Enable photon mapping mode. Loads a photon map generated with
566     .I mkpmap(1)
567     from
568     .I file,
569     and evaluates the indirect irradiance depending on the photon type
570     (automagically detected) using density estimates with a bandwidth of
571     .I bwidth1
572     photons, or the default bandwidth if none is specified (a warning will be
573     issued in this case).
574     .IP
575     Global photon irradiance is evaluated as part of the ambient calculation (see
576     .I \-ab
577     above), caustic photon irradiance is evaluated at primary rays, and
578     indirect inscattering in
579     .I mist
580 rschregle 1.29 is accounted for by volume photons. Contribution photons are treated as
581     global photons by
582     .I rtrace.
583 greg 1.26 .IP
584     Additionally specifying
585     .I bwidth2
586     enables bias compensation for the density estimates with a
587     minimum and maximum bandwidth of
588     .I bwidth1
589     and
590     .I bwidth2,
591     respectively.
592     .IP
593     Global photon irradiance may be optionally precomputed by
594     .I mkpmap(1),
595     in which case the bandwidth, if specified, is ignored, as the nearest photon
596     is invariably looked up.
597     .IP
598     Using direct photons replaces the direct calculation with density estimates
599     for debugging and validation of photon emission.
600     .TP
601     .BI -am " frac"
602 rschregle 1.27 Maximum search radius for photon map lookups. Without this option, an
603     initial maximum search radius is estimated for each photon map from the
604     average photon distance to the distribution's centre of gravity. It is then
605     adapted to the photon density in subsequent lookups. This option imposes a
606     global fixed maximum search radius for
607     .I all
608     photon maps, thus defeating the automatic adaptation. It is useful when
609     multiple warnings about short photon lookups are issued. Note that this
610     option does not conflict with the bandwidth specified with the
611     .I \-ap
612     option; the number of photons found will not exceed the latter, but may be
613     lower if the maximum search radius contains fewer photons, thus resulting in
614     short lookups. Setting this radius too large, on the other hand, may
615     degrade performance.
616 greg 1.26 .TP
617 rschregle 1.28 .BI -ac " pagesize"
618     Set the photon cache page size when using out-of-core photon mapping. The
619     photon cache reduces disk I/O incurred by on-demand loading (paging) of
620     photons, and thus increases performance. This
621     is expressed as a (float) multiple of the density estimate bandwidth
622     specified with
623     .I \-ap
624     under the assumption that photon lookups are local to a cache page. Cache
625     performance is sensitive to this parameter: larger pagesizes will reduce the
626     paging frequency at the expense of higher latency when paging does occur.
627     Sensible values are in the range 4 (default) to 16.
628     .TP
629     .BI -aC " cachesize"
630     Set the total number of photons cached when using out-of-core photon
631     mapping, taking into account the pagesize specified by
632     .I \-ac.
633     Note that this is approximate as the number of cache pages is rounded to
634     the nearest prime. This allows adapting the cache to the available physical
635     memory. In conjunction with the
636     .I \-n
637     option, this is the cache size
638     .I per parallel process.
639     Cache performance is less sensitive to this parameter,
640     and reasonable performance can obtained with as few as 10k photons. The
641     default is 1M. This option recognises multiplier suffixes (k = 1e3, M =
642     1e6), both in upper and lower case.
643     .TP
644 greg 1.1 .BI -me " rext gext bext"
645     Set the global medium extinction coefficient to the indicated color,
646     in units of 1/distance (distance in world coordinates).
647     Light will be scattered or absorbed over distance according to
648     this value.
649     The ratio of scattering to total scattering plus absorption is set
650     by the albedo parameter, described below.
651     .TP
652     .BI -ma " ralb galb balb"
653     Set the global medium albedo to the given value between 0\00\00
654     and 1\01\01.
655     A zero value means that all light not transmitted by the medium
656     is absorbed.
657     A unitary value means that all light not transmitted by the medium
658     is scattered in some new direction.
659     The isotropy of scattering is determined by the Heyney-Greenstein
660     parameter, described below.
661     .TP
662     .BI \-mg \ gecc
663     Set the medium Heyney-Greenstein eccentricity parameter to
664     .I gecc.
665     This parameter determines how strongly scattering favors the forward
666     direction.
667     A value of 0 indicates perfectly isotropic scattering.
668     As this parameter approaches 1, scattering tends to prefer the
669     forward direction.
670     .TP
671     .BI \-ms \ sampdist
672     Set the medium sampling distance to
673     .I sampdist,
674     in world coordinate units.
675     During source scattering, this will be the average distance between
676     adjacent samples.
677     A value of 0 means that only one sample will be taken per light
678     source within a given scattering volume.
679     .TP
680     .BI -lr \ N
681     Limit reflections to a maximum of
682 greg 1.20 .I N,
683     if N is a positive integer.
684 greg 1.11 If
685     .I N
686     is zero or negative, then Russian roulette is used for ray
687     termination, and the
688     .I -lw
689     setting (below) must be positive.
690 greg 1.32 If N is a negative integer, then this limits the maximum
691     number of reflections even with Russian roulette.
692 greg 1.11 In scenes with dielectrics and total internal reflection,
693     a setting of 0 (no limit) may cause a stack overflow.
694 greg 1.1 .TP
695     .BI -lw \ frac
696     Limit the weight of each ray to a minimum of
697     .I frac.
698 greg 1.11 During ray-tracing, a record is kept of the estimated contribution
699     (weight) a ray would have in the image.
700     If this weight is less than the specified minimum and the
701     .I -lr
702     setting (above) is positive, the ray is not traced.
703     Otherwise, Russian roulette is used to
704     continue rays with a probability equal to the ray weight
705     divided by the given
706     .I frac.
707 greg 1.1 .TP
708 greg 1.37 .BR \-ld
709 greg 1.1 Boolean switch to limit ray distance.
710     If this option is set, then rays will only be traced as far as the
711     magnitude of each direction vector.
712     Otherwise, vector magnitude is ignored and rays are traced to infinity.
713     .TP
714 greg 1.37 .BI -cs \ Ns
715     Use
716     .I Ns
717     bands for spectral sampling rather than the default RGB calculation space.
718     The maximum setting is controlled by the compiler macro MAXCSAMP, and
719     defaults to 24.
720     Larger values for Ns will be reduced to MAXCSAMP.
721     .TP
722     .BI -cw " nmA nmB"
723     Set extrema to the given wavelengths for spectral sampling.
724     The default is 380 and 780 nanometers.
725     The order specified does not matter.
726     .TP
727     .BR \-co
728     Boolean switch turns on spectral data output if selected.
729     The default is to reduce spectral results to RGB, but see the related
730     .I \-p*
731     options, below.
732     .TP
733     .BI -pc " xr yr xg yg xb yb xw yw"
734     Use the specified chromaticity pairs for output primaries and white
735     point rather than the standard RGB color space.
736     .TP
737     .BR \-pRGB
738     Output standard RGB values (the default).
739     .TP
740     .BR \-pXYZ
741     Output standard CIE XYZ tristimulus values rather than RGB.
742     .TP
743     .BR \-pY
744 greg 1.38 Produce a single output channel corresponding to photopic luminance.
745 greg 1.37 .TP
746     .BR \-pS
747 greg 1.38 Produce a single output channel corresponding to scotopic luminance.
748 greg 1.37 .TP
749     .BR \-pM
750 greg 1.38 Produce a single output channel corresponding to melanopic luminance.
751 greg 1.37 .TP
752 greg 1.1 .BI -e \ efile
753     Send error messages and progress reports to
754     .I efile
755     instead of the standard error.
756     .TP
757     .BR \-w
758     Boolean switch to suppress warning messages.
759     .TP
760     .BI \-P \ pfile
761     Execute in a persistent mode, using
762     .I pfile
763     as the control file.
764     Persistent execution means that after reaching end-of-file on
765     its input,
766     .I rtrace
767     will fork a child process that will wait for another
768     .I rtrace
769     command with the same
770     .I \-P
771     option to attach to it.
772     (Note that since the rest of the command line options will be those
773     of the original invocation, it is not necessary to give any arguments
774     besides
775     .I \-P
776     for subsequent calls.)
777     Killing the process is achieved with the
778     .I kill(1)
779     command.
780     (The process ID in the first line of
781     .I pfile
782     may be used to identify the waiting
783     .I rtrace
784     process.)
785     This option may be used with the
786     .I \-fr
787     option of
788     .I pinterp(1)
789     to avoid the cost of starting up
790     .I rtrace
791     many times.
792     .TP
793     .BI \-PP \ pfile
794     Execute in continuous-forking persistent mode, using
795     .I pfile
796     as the control file.
797     The difference between this option and the
798     .I \-P
799     option described above is the creation of multiple duplicate
800     processes to handle any number of attaches.
801     This provides a simple and reliable mechanism of memory sharing
802     on most multiprocessing platforms, since the
803     .I fork(2)
804     system call will share memory on a copy-on-write basis.
805 greg 1.26 .SH NOTES
806     Photons are generally surface bound (an exception are volume photons), thus
807     the ambient irradiance in photon mapping mode will be biased at positions
808     which do not lie on a surface.
809 greg 1.1 .SH EXAMPLES
810     To compute radiance values for the rays listed in samples.inp:
811     .IP "" .2i
812 greg 1.15 rtrace \-ov scene.oct < samples.inp > radiance.out
813 greg 1.1 .PP
814 greg 1.35 To compute irradiance values at locations selected with the 't'
815 greg 1.1 command of
816     .I ximage(1):
817     .IP "" .2i
818 greg 1.16 ximage scene.hdr | rtrace \-h \-x 1 \-i scene.oct | rcalc \-e '$1=47.4*$1+120*$2+11.6*$3'
819 greg 1.1 .PP
820     To record the object identifier corresponding to each pixel in an image:
821     .IP "" .2i
822 greg 1.16 vwrays \-fd scene.hdr | rtrace \-fda `vwrays \-d scene.hdr` \-os scene.oct
823 greg 1.1 .PP
824     To compute an image with an unusual view mapping:
825     .IP "" .2i
826 greg 1.17 cnt 480 640 | rcalc \-e 'xr:640;yr:480' \-f unusual_view.cal | rtrace
827 greg 1.16 \-x 640 \-y 480 \-fac scene.oct > unusual.hdr
828 greg 1.26 .PP
829 greg 1.35 To compute ambient irradiance in photon mapping mode from a global photon
830 greg 1.26 map global.pm via one ambient bounce, and from a caustic photon map
831     caustic.pm at sensor positions in samples.inp:
832     .IP "" .2i
833     rtrace -h -ov -ab 1 -ap global.pm 50 -ap caustic.pm 50 scene.oct <
834     samples.inp > illum.out
835 greg 1.1 .SH ENVIRONMENT
836     RAYPATH the directories to check for auxiliary files.
837     .SH FILES
838 greg 1.5 /tmp/rtXXXXXX common header information for picture sequence
839 greg 1.1 .SH DIAGNOSTICS
840     If the program terminates from an input related error, the exit status
841     will be 1.
842     A system related error results in an exit status of 2.
843     If the program receives a signal that is caught, it will exit with a status
844     of 3.
845     In each case, an error message will be printed to the standard error, or
846     to the file designated by the
847     .I \-e
848     option.
849     .SH AUTHOR
850     Greg Ward
851     .SH "SEE ALSO"
852 greg 1.39 dctimestep(1), getinfo(1), lookamb(1),
853     mkpmap(1), oconv(1), pfilt(1), pinterp(1),
854 greg 1.40 pvalue(1), rcalc(1), rcomb(1), rcontrib(1), rcrop(1),
855     rmtxop(1), rsplit(1),
856 greg 1.34 rpict(1), rtpict(1), rvu(1), vwrays(1), ximage(1)