1 |
|
.\" RCSid "$Id$" |
2 |
|
.TH PCOMB 1 8/31/96 RADIANCE |
3 |
|
.SH NAME |
4 |
< |
pcomb - combine RADIANCE pictures |
4 |
> |
pcomb - combine RADIANCE pictures and/or float matrices |
5 |
|
.SH SYNOPSIS |
6 |
|
.B pcomb |
7 |
|
[ |
8 |
+ |
.B -h |
9 |
+ |
][ |
10 |
|
.B -w |
11 |
|
][ |
12 |
+ |
.B -ff |
13 |
+ |
][ |
14 |
|
.B "\-x xres" |
15 |
|
][ |
16 |
|
.B "\-y yres" |
31 |
|
] |
32 |
|
.SH DESCRIPTION |
33 |
|
.I Pcomb |
34 |
< |
combines equal-sized RADIANCE pictures and sends the result to the |
35 |
< |
standard output. |
34 |
> |
combines equal-sized RADIANCE pictures or raw float matrices |
35 |
> |
and sends the result to the standard output. |
36 |
|
By default, the result is just a linear combination of |
37 |
< |
the input pictures multiplied by |
37 |
> |
the input pixels multiplied by |
38 |
|
.I \-s |
39 |
|
and |
40 |
|
.I \-c |
43 |
|
.I \-e |
44 |
|
and |
45 |
|
.I \-f |
46 |
< |
options. |
46 |
> |
options, similar to |
47 |
> |
.I rcalc(1). |
48 |
> |
(The variable and function definitions in each |
49 |
> |
.I \-f source |
50 |
> |
file are read and compiled from the RADIANCE library |
51 |
> |
where it is found.)\0 |
52 |
|
Negative coefficients and functions are allowed, and |
53 |
|
.I pcomb |
54 |
< |
will produce color values of zero where they would be negative. |
54 |
> |
will produce color values of zero where they would be negative |
55 |
> |
unless the |
56 |
> |
.I \-ff |
57 |
> |
option is used to specify floating-point matrix output. |
58 |
|
.PP |
59 |
|
The variables |
60 |
|
.I ro, |
70 |
|
.I gi(n) |
71 |
|
and |
72 |
|
.I bi(n) |
73 |
< |
give the red, green and blue input values for |
74 |
< |
picture |
73 |
> |
give the red, green and blue values for |
74 |
> |
input |
75 |
|
.I n. |
76 |
|
To access a pixel that is nearby the current one, these functions |
77 |
|
also accept optional x and y offsets. |
78 |
|
For example, |
79 |
|
.I ri(3,-2,1) |
80 |
< |
would return the red component of the pixel from picture 3 |
80 |
> |
would return the red component of the pixel from input 3 |
81 |
|
that is left 2 and up 1 from the current position. |
82 |
< |
Although x offsets may be as large as width of the picture, |
83 |
< |
y offsets are limited to a small window (+/- 8 pixels) due to efficiency |
82 |
> |
Although x offsets may be as large as width of the input, |
83 |
> |
y offsets are limited to a small window (+/- 32 pixels) due to efficiency |
84 |
|
considerations. |
85 |
|
However, it is not usually necessary to worry about this problem -- |
86 |
|
if the requested offset is not available, the next best pixel is |
88 |
|
.PP |
89 |
|
For additional convenience, the function |
90 |
|
.I li(n) |
91 |
< |
is defined as the input brightness for picture |
91 |
> |
is defined as the input brightness for input |
92 |
|
.I n. |
93 |
|
This function also accepts x and y offsets. |
94 |
|
.PP |
120 |
|
.I "re(n), ge(n), be(n)," |
121 |
|
and |
122 |
|
.I le(n) |
123 |
< |
give the exposure values for picture |
123 |
> |
give the exposure values for input |
124 |
|
.I n, |
125 |
|
and |
126 |
|
.I pa(n) |
127 |
|
gives the corresponding pixel aspect ratio. |
128 |
< |
Finally, for pictures with stored view parameters, |
128 |
> |
Exposure values will be set to 1.0 for inputs with the |
129 |
> |
.I \-o |
130 |
> |
option set. |
131 |
> |
Finally, for inputs with stored view parameters, |
132 |
|
the functions |
133 |
|
.I "Ox(n), Oy(n)" |
134 |
|
and |
135 |
|
.I Oz(n) |
136 |
|
return the ray origin in world coordinates for the current pixel |
137 |
< |
in picture |
137 |
> |
in input |
138 |
|
.I n, |
139 |
|
and |
140 |
|
.I "Dx(n), Dy(n)" |
153 |
|
will return a negative value, and |
154 |
|
.I S(n) |
155 |
|
will return zero. |
156 |
+ |
The first input input with a view is assumed to correspond to the |
157 |
+ |
view of the output, which is written into the header. |
158 |
|
.PP |
159 |
|
The |
160 |
+ |
.I \-h |
161 |
+ |
option may be used to reduce the information header size, which |
162 |
+ |
can grow disproportionately after multiple runs of |
163 |
+ |
.I pcomb |
164 |
+ |
and/or |
165 |
+ |
.I pcompos(1). |
166 |
+ |
The |
167 |
|
.I \-w |
168 |
|
option can be used to suppress warning messages about invalid |
169 |
|
calculations. |
170 |
|
The |
171 |
|
.I \-o |
172 |
|
option indicates that original pixel values are to be used for the next |
173 |
< |
picture, undoing any previous exposure changes or color correction. |
173 |
> |
input, undoing any previous exposure changes or color correction. |
174 |
|
.PP |
175 |
|
The |
176 |
|
.I \-x |
202 |
|
and |
203 |
|
.I bo |
204 |
|
will be used to compute each output pixel. |
205 |
< |
This is useful for producing simple test pictures for various |
205 |
> |
This is useful for producing simple test inputs for various |
206 |
|
purposes. |
207 |
|
(Theoretically, one could write a complete renderer using just the |
208 |
|
functional language...) |
209 |
|
.PP |
210 |
|
The standard input can be specified with a hyphen ('-'). |
211 |
< |
A command that produces a RADIANCE picture can be given in place of a file |
211 |
> |
A command that produces a RADIANCE picture or float matrix |
212 |
> |
can be given in place of a file |
213 |
|
by preceeding it with an exclamation point ('!'). |
214 |
|
.SH EXAMPLES |
215 |
|
To produce a picture showing the difference between pic1 and pic2: |
216 |
|
.IP "" .2i |
217 |
< |
pcomb -e 'ro=ri(1)-ri(2);go=gi(1)-gi(2);bo=bi(1)-bi(2)' pic1 pic2 > diff |
217 |
> |
pcomb \-e 'ro=ri(1)\-ri(2);go=gi(1)\-gi(2);bo=bi(1)\-bi(2)' pic1 pic2 > diff |
218 |
|
.PP |
219 |
|
Or, more efficiently: |
220 |
|
.IP "" .2i |
221 |
< |
pcomb pic1 -s -1 pic2 > diff |
221 |
> |
pcomb pic1 \-s \-1 pic2 > diff |
222 |
|
.PP |
223 |
|
To precompute the gamma correction for a picture: |
224 |
|
.IP "" .2i |
225 |
< |
pcomb -e 'ro=ri(1)^.4;go=gi(1)^.4;bo=bi(1)^.4' pic > pic.gam |
225 |
> |
pcomb \-e 'ro=ri(1)^.4;go=gi(1)^.4;bo=bi(1)^.4' inp.hdr > gam.hdr |
226 |
|
.PP |
227 |
|
To perform some special filtering: |
228 |
|
.IP "" .2i |
229 |
< |
pcomb -f myfilt.cal -x xmax/2 -y ymax/2 input.pic > filtered.pic |
229 |
> |
pcomb \-f myfilt.cal \-x xmax/2 \-y ymax/2 input.hdr > filtered.hdr |
230 |
|
.PP |
231 |
|
To make a picture of a dot: |
232 |
|
.IP "" .2i |
233 |
< |
pcomb -x 100 -y 100 -e 'ro=b;go=b;bo=b;b=if((x-50)^2+(y-50)^2-25^2,0,1)' > dot |
233 |
> |
pcomb \-x 100 \-y 100 \-e 'ro=b;go=b;bo=b;b=if((x-50)^2+(y-50)^2\-25^2,0,1)' > dot |
234 |
> |
.PP |
235 |
> |
Use a depth buffer to superimpose 3-D gridlines on rendered image: |
236 |
> |
.IP "" .2i |
237 |
> |
rcollate -hi -ff -o 3000x3000 raw_orig.zbf |
238 |
> |
| pcomb -e 't=gi(2);Px=Ox(1)+t*Dx(1);Py=Oy(1)+t*Dy(1);Pz=Oz(1)+t*Dz(1)' |
239 |
> |
-e 'frac(x):x-floor(x)' -e 'Rg:0;Gg:0;Bg:1;gsiz:0.04' |
240 |
> |
-e 'ingr=gsiz-min(frac(Px),frac(Py),frac(Pz))' |
241 |
> |
-e 'ro=if(ingr,Rg,ri(1));go=if(ingr,Gg,gi(1));bo=if(ingr,Bg,bi(1))' |
242 |
> |
raw_orig.hdr - > trans_def_grid.hdr |
243 |
> |
.SH ENVIRONMENT |
244 |
> |
RAYPATH the directories to check for auxiliary files. |
245 |
|
.SH AUTHOR |
246 |
|
Greg Ward |
247 |
|
.SH "SEE ALSO" |
248 |
< |
calc(1), getinfo(1), pcompos(1), pfilt(1), rpict(1) |
248 |
> |
getinfo(1), icalc(1), pcompos(1), pfilt(1), rcalc(1), |
249 |
> |
rmtxcomb(1), rmtxop(1), rpict(1) |