
UNIX and RADIANCE

Giulio Antonutto & Andrew McNeil

Unix Terminal 3

Starting the Terminal Application 3

Useful Unix Commands 3

Wildcard Characters 4

Directory Characters 4

Process control 4

Pipes and Redirection 4

Shell Redirection Operators 5

Makefile 5

X11 - X Window Server 7

Launching X11 7

The First Time 7

SCRIPTING 8

HOW TO START 8

HOW TO CONTINUE 9

Create the file ‘run’ 9

Give the proper permissions 9

Run the new tool 9

Future 9

UNIX and RADIANCE 2

Unix Terminal

Starting the Terminal Application
On a Mac the terminal program can be found in the /Applications/Utilities folder. When launched a

window titled “Terminal - Bash - 80 x 24” will appear. This window contains a Unix prompt (which is in

some ways similar to a DOS prompt for those familiar with windows). At the prompt you can type

commands that will be executed within the terminal window.

Useful Unix Commands

The following UNIX commands will allow the user to navigate through the file system, manipulate files, check and terminate

running processes.

Command Description Usage Useful options

ls list directory contents ls

ls folder/

-l lists additional file info

-a lists all files (including hidden files)

cd change directory cd folder/folder2/

cd ..

more view a text file one page at a time more file.txt

cp copy file cp file.txt newfile.txt

mv move a file mv oldloc.txt newloc..txt

rm remove a file rm file DANGER, DO NOT USE: rm *

ps list currently running processes ps

top list the currently running processes

and various system statistic

top -u -s 5 5

UNIX and RADIANCE 3

Command Description Usage Useful options

kill kills a running process kill pid pid is the process id number which

can be found by using ps.

open open the current folder or a file open . use -a to specify the application to use

man open manual page for a command man command to quit press esc and then q.

to browse use arrows

These are just a few useful Unix commands. They operate in a standard manner across most flavors of UNIX.

Try typing ls at your UNIX prompt. It lists the contents of your current directory. Now type ls -l it displays more information

of the contents in your current directory. Want to know more about the command? Type man ls to view the manual page

for ls. ‘man’ will look for the manual page for any command. Most UNIX commands and Radiance programs have manual

pages. if you’re ever stuck give man a try!

Wildcard Characters

Character Description

*
Represents any character(s) including none.

Typing ‘ls d*.txt’ would list d.txt, d4.txt and dd_car.txt.

?
Represents any single character.

Typing ls d?.txt would return d4.txt, but not d.txt nor dd_car.txt.

Directory Characters

Character Description

. Current directory

.. Parent directory (the directory up one level - containing the current directory)

Process control

Character Description

ctrl - c kills a process running in the foreground

ctrl - z stops (pauses) a process running in the foreground

bg continues a stopped (paused) process in the background

fg returns a stopped (paused) or background process to the foreground

Pipes and Redirection
By default most commands or programs output data to what is known as the standard output. Basically, this means it

displays it in the terminal. However, there will be occasions when we would prefer that the results of a command to be put

in a file for use later. This can be achieved by using pipes and redirection.

For example, if you type ls -l, the directory contents will be listed in the terminal. If you type ls -l > contents.txt, the

directory contents will be put in the file contents.txt. The ‘>’ character is a redirection operator that tells the shell to put the

output in a file. Type more contents.txt to view the contents of the file.

UNIX and RADIANCE 4

Shell Redirection Operators

Symbol Usage Description

> cmd > file Send the output of cmd to file. If the file exists, it will be overwritten.

>> cmd >> file
Append the output of cmd to file. If the file exists, the output will be

added to the end of the file.

< cmd < file Take input from file for use by cmd.

| cmd1 | cmd2 Send the output from cmd1 to input of cmd2.

The ‘|’ character is called a pipe. It is used to connect the output of one command with the input of another. For example

type ps -aux at the prompt. Whoa, did you get all that? This command prints all the current processes running on the

computer in order of processor usage. Now try ps -aux | more and use the enter key to scroll. The output of ps is sent to

the program more which displays the data one page at a time.

Pipes and redirection are used often in Radiance. It is a convenient and efficient way of sending data to a file or to another

program. For example, the following command will calculate the RGB spectral irradiance at each point in a grid file, converts

to photopic illuminance and writes the results to a file in the format X Y Z Illuminance.

rtrace -h- -I -ab 2 -oov model.oct < grid.pts | rcalc -e ‘$1=$1;$2=$2;$3=$3;$4=$4*47.4+$5*119.9+$6*11.6’ > E_grid.out

The inter-workings of this command are not important at the moment. Just understand that the file grid.pts given as input to

the program rtrace using the ‘<’ operator, the results are passed from rtrace to rcalc using ‘|’ and the final data is written to

the file E_grid.out using the ‘>’ character.

Makefile
In the UNIX environment there is a utility called make that manages file dependencies and commands for creating files. The

utility is intended for generating executable programs and rebuilding the components whose source codes and referenced

libraries have changed since last compiled. However, make can also be used for managing radiance workflow. It can be

used to manage interdependencies between model components and simulation data. It has the additional benefit of

providing a comprehensive record of commands and options used to produce output.

All the commands required are put in a file called Makefile.

The best way to understand make is through example. The basic syntax for a make file is as follows:

product.out: depend1.txt depend2.inp
	
 command -option < depend1.txt| command2 < depend2.inp> file.out

In this example file.out is the object that is to be made. It relies on the files depend1.txt and depend2.inp. This is to say that

if they don’t exist file.out can not be made and if they have been updated file.out needs to be remade. The indented line

following is the instruction for making file.out. To make file.out, at the prompt one would type make product.out. Make

would then check to see if product.out existed. If it did, it would check the creation time of file.out and compare it with the

modification time of the dependencies. If the dependencies have changed since product.out was made, it would make

fproduct.out again (by executing the command on the line that follows). If product.out did not exist, make would make it.

Let’s look at a radiance specific example:

Makefile for classroom project

GEOMETRY = floor.rad walls.rad ceiling.rad glass.rad

model.oct: materials.rad $(GEOMETRY)
	
 oconv materials.rad $(GEOMETRY) > model.oct

UNIX and RADIANCE 5

model_jc.oct: model.oct sky_jc.rad
	
 oconv -i model.oct sky_jc.rad > model_jc.oct
	
 rm model_jc.amb

view1.raw: v1.vf model_jc.oct
	
 rpict -vf v1.vf -ab 2 -af model_jc.amb model_df.oct > view1.raw

This example may not be clear until after you are more familiar with radiance, but it may prove to be a useful reference later.

Do remember to return to it as you get further into your analysis.

The first line is a comment, make will ignore lines that start with the character #, so use this to enter comments.

Next, the statement ‘GEOMETRY = floor.rad walls...‘ is a variable declaration. Later in the file the variable is used in the

making of model.oct. make will replace the syntax $(GEOMETRY) with “floor.rad walls.rad ceiling.rad glass.rad”

Let’s suppose that you have run everything and are looking at the image view1.raw. You notice that the sky is sunny, but

you inteded it to be overcast. So you need to change the file sky_jc.rad. Then instead of figuring out what needs to change,

you simply type make view1.raw. Then make will check the dependencies it will see that it is dependent on the file

model_jc.oct, so it checks the dependencies of model_jc.oct and sees that it is dependent on sky_jc.rad which has been

modified since view1.raw was last made. Make then executes the commands that generate model_jc.oct (one of which

deletes the ambient file since it is now invalid) it will then start to make view1.raw with the new model_jc.oct file.

UNIX and RADIANCE 6

X11 - X Window Server

Launching X11
Radiance uses an X window protocol to display graphical information. This approach is common with unix.

Apple has provides an X window system with OSX. The X window system needs to be running for any of

Radiance’s graphical programs to run (rvu, ximage & objview).

To start X11 simply go to Applications/Utilities and double click the X11 icon. An xterm window will appear, this

window can be hidden or minimized without causing disruption.

The First Time
Prior to using X11 with radiance from the terminal you will need to set the Display Variable in you bash profile. This only

needs to be done once per user. To do this you need to add the following to the file .bash_profile in your home directory:

if [-z "${DISPLAY}"];then echo -n
export DISPLAY=':0'
fi

The file .bash_profile is a hidden file. This is indicated by the preceding period in the file name. Hidden files will not appear in

the finder. The best way to access .bash_profile is by typing:

open -a textedit .bash_profile

BE CAREFUL! The file .bash_profile contains some important stuff and may cause a few things to stop working if you mess

with it. Once this has been added and saved, quit and restart the terminal.

UNIX and RADIANCE 7

SCRIPTING

HOW TO START
Simply write always your commands sequentially into a text file within the radiance folder.

Use a lot of comments and provide reference for others.

comments may be inserted by starting a line with the # symbol like this:

#comments ... comments ... comments

To run such a list of commands, as a script just type:

sh command_file_name

UNIX and RADIANCE 8

HOW TO CONTINUE
If you are interested in developing further you may need to know how to create a command.

If is essentially like a script but with special permission and special header, follow this example:

Create the file ‘run’
#/bin/tcsh -f

#the line above is required in all the command files

#now you may use any command radiance offer or special while, for cycles:
foreach view (1 2 3 4 5 6 7)

#note that variables are called with $

set settings = (-ab 4 -aa .2 -ad 1024 -as 512 -af model.amb -ps 1)

rpict -vf views/$view.vf $settings model.oct > $view.pic
pcond -h $view.pic > $view.pic.2
ra_tiff $view.pic.2 $view.tif

end

Give the proper permissions
Just type (run is the name of the file, it may be different):

chmod u+x run

Run the new tool
Just type (run is the name of the file, it may be different):

./run

Note: The script name is preceded by ./ which tells the terminal to find the script in the current directory.

Future
This file create a rendering of your model for each of the view specified with a set of given settings.

With the same syntax is possible to automate many tedious tasks and speed up sensibly the radiance simulation.

We leave to the reader the task to investigate further.

UNIX and RADIANCE 9

