Copyright © 2025 Regents, University of California

The
RADIANCE 6.0
Synthetic Imaging System

Building Technologies Department
Lawrence Berkeley Laboratory
1 Cyclotron Rd., MS 90-3111
Berkeley, CA 94720

1. Introduction

RADIANCE was developed as a research tool for predicting the distribution of visible radiation in
illuminated spaces. It takes as input a three-dimensional geometric model of the physical environment, and
produces a map of spectral radiance values in a color image. The technique of ray-tracing follows light
backwards from the image plane to the source(s). Because it can produce realistic images from a simple
description, RADIANCE has a wide range of applications in graphic arts, lighting design, computer-aided
engineering and architecture.

Generator "xform"

Scene
Description

"oconv”

"rtrace”
= ARy
= pict’ ~
— = Filter
~ —
"rview"
\/

Driver

\/
| =
Figure 1.

The diagram in Figure 1 shows the flow between programs (boxes) and data (ovals). The central pro-
gram is rpict, which produces a picture from a scene description. Rview is a variation of rpict that com-
putes and displays images interactively. Other programs (not shown) connect many of these elements
together, such as the executive programs rad and ranimate, the interactive rendering program rholo, and the
animation program ranimove. The program obj2mesh acts as both a converter and scene compiler,

ARRY,

Auxiliary
Files

07/22/2025

gward
Placed Image

2-

converting a Wavefront .OBJ file into a compiled mesh octree for efficient rendering.

A scene description file lists the surfaces and materials that make up a specific environment. The
current surface types are spheres, polygons, cones, and cylinders. There is also a composite surface
type, called mesh, and a pseudosurface type, called instance, which facilitates very complex geometries.
Surfaces can be made from materials such as plastic, metal, and glass. Light sources can be distant disks as
well as local spheres, disks and polygons.

From a three-dimensional scene description and a specified view, rpict produces a two-dimensional
image. A picture file is a compressed binary representation of the pixels in the image. This picture can be
scaled in size and brightness, anti-aliased, and sent to a graphics output device.

A header in each picture file lists the program(s) and parameters that produced it. This is useful for
identifying a picture without having to display it. The information can be read by the program getinfo.

2. Scene Description

A scene description file represents a three-dimensional physical environment in Cartesian (rectilin-
ear) world coordinates. It is stored as ASCII text, with the following basic format:

comment

modifier type identifier
nS1S2"S3"..Sn

0

mR1R2R3..Rm

modifier alias identifier reference

! command

A comment line begins with a pound sign, ‘#’.

The scene description primitives all have the same general format, and can be either surfaces or mod-
ifiers. A primitive has a modifier, a type, and an identifier. A modifier is either the identifier of a previously
defined primitive, or "void"T. An identifier can be any string (i.e., any sequence of non-white characters).
The arguments associated with a primitive can be strings or real numbers. The first integer following the
identifier is the number of string arguments, and it is followed by the arguments themselves (separated by
white space or enclosed in quotes). The next integer is the number of integer arguments, and is followed by
the integer arguments. (There are currently no primitives that use them, however.) The next integer is the
real argument count, and it is followed by the real arguments.

An alias gets its type and arguments from a previously defined primitive. This is useful when the
same material is used with a different modifier, or as a convenient naming mechanism. The reserved modi-
fier name "inherit" may be used to specificy that an alias will inherit its modifier from the original. Sur-
faces cannot be aliased.

(3K

A line beginning with an exclamation point, ‘!’ is interpreted as a command. It is executed by the
shell, and its output is read as input to the program. The command must not try to read from its standard
input, or confusion will result. A command may be continued over multiple lines using a backslash, ‘\’, to
escape the newline.

White space is generally ignored, except as a separator. The exception is the newline character after
a command or comment. Commands, comments and primitives may appear in any combination, so long as
they are not intermingled.

FTThe most recent definition of a modifier is the one used, and later definitions do not cause relinking of loaded

primitives. Thus, the same identifier may be used repeatedly, and each new definition will apply to the primi-
tives following it.

07/22/2025

3-

2.1. Primitive Types

Primitives can be surfaces, materials, textures or patterns. Modifiers can be materials, mixtures, tex-
tures or patterns. Simple surfaces must have one material in their modifier list.

2.1.1. Surfaces
A scene description will consist mostly of surfaces. The basic types are given below.
Source

A source is not really a surface, but a solid angle. It is used for specifying light sources that are very
distant. The direction to the center of the source and the number of degrees subtended by its disk are given
as follows:

mod source id
0
0

4 xdir ydir zdir angle

Sphere
A sphere is given by its center and radius:

mod sphere id
0
0

4 xcent ycent zcent radius

Bubble
A bubble is simply a sphere whose surface normal points inward.
Polygon

A polygon is given by a list of three-dimensional vertices, which are ordered counter-clockwise as
viewed from the front side (into the surface normal). The last vertex is automatically connected to the first.
Holes are represented in polygons as interior vertices connected to the outer perimeter by coincident edges
(seams).

mod polygon id

0

0

3n
xlI yl zl
X2 y2 z2

Xn yn zn

Cone

A cone is a megaphone-shaped object. It is truncated by two planes perpendicular to its axis, and one
of its ends may come to a point. It is given as two axis endpoints, and the starting and ending radii:

mod cone id

0

0

8
x0 y0 z0
xlI yl zl
0 rl

07/22/2025

4-

A cup is an inverted cone (i.e., has an inward surface normal).
Cylinder
A cylinder is like a cone, but its starting and ending radii are equal.

mod cylinder id

0
0
7
x0 y0 z0
xlI yl zl
rad
Tube
A tube is an inverted cylinder.
Ring
A ring is a circular disk given by its center, surface normal, and inner and outer radii:
mod ring id
0
0
8
xcent ycent zcent
xdir ydir zdir
0 rl
Mesh

A mesh is a compound surface, made up of many triangles and an octree data structure to accelerate
ray intersection. It is typically converted from a Wavefront .OBJ file using the obj2mesh program.

mod mesh id

1+ meshfile transform
0

0

If the modifier is "void", then surfaces will use the modifiers given in the original mesh description. Other-
wise, the modifier specified is used in their place. The transform moves the mesh to the desired location in
the scene. Multiple instances using the same meshfile take little extra memory, and the compiled mesh
itself takes much less space than individual polygons would. In the case of an unsmoothed mesh, using the
mesh primitive reduces memory requirements by a factor of 30 relative to individual triangles. If a mesh
has smoothed surfaces, we save a factor of 50 or more, permitting very detailed geometries that would oth-
erwise exhaust the available memory. In addition, the mesh primitive can have associated (u,v) coordinates
for pattern and texture mapping. These are made available to function files via the Lu and Lv variables.

Instance

An instance is a compound surface, given by the contents of an octree file (created by oconv).

mod instance id

1+ octree transform
0

0

If the modifier is "void", then surfaces will use the modifiers given in the original description. Otherwise,
the modifier specified is used in their place. The transform moves the octree to the desired location in the
scene. Multiple instances using the same octree take little extra memory, hence very complex descriptions
can be rendered using this primitive.

07/22/2025

-5-

There are a number of important limitations to be aware of when using instances. First, the scene
description used to generate the octree must stand on its own, without referring to modifiers in the parent
description. This is necessary for oconv to create the octree. Second, light sources in the octree will not be
incorporated correctly in the calculation, and they are not recommended. Finally, there is no advantage
(other than convenience) to using a single instance of an octree, or an octree containing only a few surfaces.
An xform command on the subordinate description is prefered in such cases.

2.1.2. Materials

A material defines the way light interacts with a surface. The basic types are given below.
Light

Light is the basic material for self-luminous surfaces (i.e., light sources). In addition to the source
surface type, spheres, discs (rings with zero inner radius), cylinders (provided they are long enough), and
polygons can act as light sources. Polygons work best when they are rectangular. Cones cannot be used at

this time. A pattern may be used to specify a light output distribution. Light is defined simply as a RGB
radiance value (watts/steradian/m?2):

mod light id

0

0

3 red green blue

Illum

Illum is used for secondary light sources with broad distributions. A secondary light source is treated
like any other light source, except when viewed directly. It then acts like it is made of a different material
(indicated by the string argument), or becomes invisible (if no string argument is given, or the argument is
"void"). Secondary sources are useful when modeling windows or brightly illuminated surfaces.

mod illum id

1 material

0

3 red green blue

Glow

Glow is used for surfaces that are self-luminous, but limited in their effect. In addition to the radi-
ance value, a maximum radius for shadow testing is given:

mod glow id
0
0

4 red green blue maxrad

If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an inter-
reflection calculation. If maxrad is negative, then the surface will never contribute to scene illumination.
Glow sources will never illuminate objects on the other side of an illum surface. This provides a con-
venient way to illuminate local light fixture geometry without overlighting nearby objects.

Spotlight

Spotlight is used for self-luminous surfaces having directed output. As well as radiance, the full cone
angle (in degrees) and orientation (output direction) vector are given. The length of the orientation vector is
the distance of the effective focus behind the source center (i.e., the focal length).

mod spotlight id
0
0

7 red green blue angle xdir ydir zdir

07/22/2025

-6-

Mirror

Mirror is used for planar surfaces that produce virtual source reflections. This material should be
used sparingly, as it may cause the light source calculation to blow up if it is applied to many small sur-
faces. This material is only supported for flat surfaces such as polygons and rings. The arguments are sim-
ply the RGB reflectance values, which should be between 0 and 1. An optional string argument may be
used like the illum type to specify a different material to be used for shading non-source rays. If this alter-
nate material is given as "void", then the mirror surface will be invisible. This is only appropriate if the sur-
face hides other (more detailed) geometry with the same overall reflectance.

mod mirror id

1 material

0

3 red green blue

While alternate materials that are reflective will appear as normal, indirect rays will use the mirror’s
reflectance rather than the alternate type. Transmitting materials are an exception, where both transmission
and reflection will use the alternate type for all rays not specifically targeting virtual light sources. In this
case, it is important that any reflections be purely specular (mirror-like) and equal to the mirror’s reflectivity
to maintain a valid result. A pure diffuse reflection may be added if desired.

The mirror material type reflects light sources only from the front side of a surface, regardless of any
alternate material. If virtual source generation is desired on both sides, two coincident surfaces with oppo-
site normal orientations may be employed to achieve this effect. The reflectance and alternate material type
may be different for the overlapped surfaces, and the two sides will behave accordingly.

Prism1

The prism1 material is for general light redirection from prismatic glazings, generating virtual light
sources. It can only be used to modify a planar surface (i.e., a polygon or disk) and should not result in
either light concentration or scattering. The new direction of the ray can be on either side of the material,
and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
The arguments give the coefficient for the redirected light and its direction.

mod prism1 id

5+ coef dx dy dz funcfile transform
0

n Al A2 .. An

The new direction variables dx, dy and dz need not produce a normalized vector. For convenience, the vari-
ables DxA, DyA and DzA are defined as the normalized direction to the target light source. See section
2.2.1 on function files for further information.

Prism2

The material prism?2 is identical to prism1 except that it provides for two ray redirections rather than

one.
mod prism2 id
9+ coefl dx1 dyl dzl coef2 dx2 dy2 dz2 funcfile transform
0
nAl A2 .. An

Mist

Mist is a virtual material used to delineate a volume of participating atmosphere. A list of important
light sources may be given, along with an extinction coefficient, scattering albedo and scattering eccentric-
ity parameter. The light sources named by the string argument list will be tested for scattering within the
volume. Sources are identified by name, and virtual light sources may be indicated by giving the relaying
object followed by ’>’ followed by the source, i.e:

3 sourcel mirrorl>sourcelQ mirror2>mirrorl>source3

07/22/2025

-

Normally, only one source is given per mist material, and there is an upper limit of 32 to the total number of
active scattering sources. The extinction coefficient, if given, is added to the global coefficient set on the
command line. Extinction is in units of 1/distance (distance based on the world coordinates), and indicates
the proportional loss of radiance over one unit distance. The scattering albedo, if present, will override the
global setting within the volume. An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo
of 1 1 1 means a perfectly scattering medium (no absorption). The scattering eccentricity parameter will
likewise override the global setting if it is present. Scattering eccentricity indicates how much scattered
light favors the forward direction, as fit by the Henyey-Greenstein function:

P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))"1.5

A perfectly isotropic scattering medium has a g parameter of 0, and a highly directional material has a g
parameter close to 1. Fits to the g parameter may be found along with typical extinction coefficients and
scattering albedos for various atmospheres and cloud types in USGS meteorological tables. (A pattern will
be applied to the extinction values.)

mod mist id

N srcl src2 .. srtcN

0

0131617 [rext gext bext [ralb galb balb [g]]]

There are two usual uses of the mist type. One is to surround a beam from a spotlight or laser so that it is
visible during rendering. For this application, it is important to use a cone (or cylinder) that is long enough
and wide enough to contain the important visible portion. Light source photometry and intervening objects
will have the desired effect, and crossing beams will result in additive scattering. For this application, it is
best to leave off the real arguments, and use the global rendering parameters to control the atmosphere. The
second application is to model clouds or other localized media. Complex boundary geometry may be used
to give shape to a uniform medium, so long as the boundary encloses a proper volume. Alternatively, a pat-
tern may be used to set the line integral value through the cloud for a ray entering or exiting a point in a
given direction. For this application, it is best if cloud volumes do not overlap each other, and opaque
objects contained within them may not be illuminated correctly unless the line integrals consider enclosed
geometry.

Plastic

Plastic is a material with uncolored highlights. It is given by its RGB reflectance, its fraction of spec-
ularity, and its roughness value. Roughness is specified as the rms slope of surface facets. A value of O
corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface. Specularity
fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic. (A pattern modifying
plastic will affect the material color.)

mod plastic id

0

0

5 red green blue spec rough

Metal

Metal is similar to plastic, but specular highlights are modified by the material color. Specularity of
metals is usually .9 or greater. As for plastic, roughness values above .2 are uncommon.

Trans

Trans is a translucent material, similar to plastic. The transmissivity is the fraction of penetrating
light that travels all the way through the material. The transmitted specular component is the fraction of
transmitted light that is not diffusely scattered. Transmitted and diffusely reflected light is modified by the
material color. Translucent objects are infinitely thin.

07/22/2025

mod trans id
0
0

7 red green blue spec rough trans tspec

Plastic2

Plastic2 is similar to plastic, but with anisotropic roughness. This means that highlights in the sur-
face will appear elliptical rather than round. The orientation of the anisotropy is determined by the unnor-
malized direction vector ux uy uz. These three expressions (separated by white space) are evaluated in the
context of the function file funcfile. If no function file is required (i.e., no special variables or functions are
required), a period (‘.”) may be given in its place. (See the discussion of Function Files in the Auxiliary
Files section). The urough value defines the roughness along the u vector given projected onto the surface.
The vrough value defines the roughness perpendicular to this vector. Note that the highlight will be nar-
rower in the direction of the smaller roughness value. Roughness values of zero are not allowed for effi-
ciency reasons since the behavior would be the same as regular plastic in that case.

mod plastic2 id

4+ ux uy uz funcfile transform

0

6 red green blue spec urough vrough

Metal2
Metal?2 is the same as plastic2, except that the highlights are modified by the material color.
Trans2

Trans?2 is the anisotropic version of trans. The string arguments are the same as for plastic2, and the
real arguments are the same as for trans but with an additional roughness value.

mod trans?2 id

4+ ux uy uz funcfile transform

0

8 red green blue spec urough vrough trans tspec

Ashik2

Ashik? is the anisotropic reflectance model by Ashikhmin & Shirley. The string arguments are the
same as for plastic2, but the real arguments have additional flexibility to specify the specular color. Also,
rather than roughness, specular power is used, which has no physical meaning other than larger numbers
are equivalent to a smoother surface. Unlike other material types, total reflectance is the sum of diffuse and
specular colors, and should be adjusted accordingly.

mod ashik?2 id

4+ ux uy uz funcfile transform

0

8 dred dgrn dblu sred sgrn sblu u-power v-power

WGMDfunc

WGMDfunc is a more programmable version of trans2, with separate modifier paths and variables to
control each component. (WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for this
empirical model, similar to the previous ones beside Ashik2.) The specification of this material is given
below.

07/22/2025

mod WGMDfunc id

13+ rs_mod rs rs_urough rs_vrough
ts_mod ts ts_urough ts_vrough
td_mod
ux uy uz funcfile transform

0

9+ rfdif gfdif bfdif
rbdif gbdif bbdif
rtdif gtdif btdif
A10 ..

The sum of specular reflectance (rs), specular transmittance (s), diffuse reflectance (rfdif gfdif bfdif for
front and rbdif gbdif bbdif for back) and diffuse transmittance (r¢dif gtdif btdif) should be less than 1 for
each channel.

Unique to this material, separate modifier channels are provided for each component. The main
modifier is used on the diffuse reflectance, both front and back. The rs_mod modifier is used for specular
reflectance. If "void" is given for rs_mod, then the specular reflection color will be white. The special
"inherit" keyword may also be given, in which case specular reflectance will share the main modifier. This
behavior is replicated for the specular transmittance modifier ts_mod, which has its own independent rough-
ness expressions. Finally, the diffuse transmittance modifier is given as td_mod, which may also be "void"
or "inherit". Note that any spectra or color for specular components must be carried by the named modi-
fier(s).

The main advantage to this material over BRTDfunc and other programmable types described below
is that the specular sampling is well-defined, so that all components are fully computed.

Dielectric

A dielectric material is transparent, and it refracts light as well as reflecting it. Its behavior is deter-
mined by the index of refraction and transmission coefficient in each wavelength band per unit length.
Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over
an inch. An additional number, the Hartmann constant, describes how the index of refraction changes as a
function of wavelength. It is usually zero. (A pattern modifies only the refracted value.)

mod dielectric id
0
0
5 rtn gtn btn n he

Interface

An interface is a boundary between two dielectrics. The first transmission coefficient and refractive
index are for the inside; the second ones are for the outside. Ordinary dielectrics are surrounded by a vac-
uum (111 1).

mod interface id

0

0

8 rtnl gtnl btnl nl rtn2 gtn2 btn2 n2

Glass

Glass is similar to dielectric, but it is optimized for thin glass surfaces (n = 1.52). One transmitted
ray and one reflected ray is produced. By using a single surface is in place of two, internal reflections are
avoided. The surface orientation is irrelevant, as it is for plastic, metal, and trans. The only specification
required is the transmissivity at normal incidence. (Transmissivity is the amount of light not absorbed in
one traversal of the material. Transmittance -- the value usually measured -- is the total light transmitted
through the pane including multiple reflections.) To compute transmissivity (tn) from transmittance (Tn)
use:

07/22/2025

-10-

tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn

Standard 88% transmittance glass has a transmissivity of 0.96. (A pattern modifying glass will affect the
transmissivity.) If a fourth real argument is given, it is interpreted as the index of refraction to use instead
of 1.52.

mod glass id
0
0
3 rtn gtn btn

Plasfunc

Plasfunc in used for the procedural definition of plastic-like materials with arbitrary bidirectional
reflectance distribution functions (BRDF’s). The arguments to this material include the color and specular-
ity, as well as the function defining the specular distribution and the auxiliary file where it may be found.

mod plasfunc id

2+ refl funcfile transform

0

4+ red green blue spec AS ..

The function refl takes four arguments, the x, y and z direction towards the incident light, and the solid
angle subtended by the source. The solid angle is provided to facilitate averaging, and is usually ignored.
The refl function should integrate to 1 over the projected hemisphere to maintain energy balance. At least
four real arguments must be given, and these are made available along with any additional values to the
reflectance function. Currently, only the contribution from direct light sources is considered in the specular
calculation. As in most material types, the surface normal is always altered to face the incoming ray.

Metfunc

Metfunc is identical to plasfunc and takes the same arguments, but the specular component is multi-
plied also by the material color.

Transfunc

Transfunc is similar to plasfunc but with an arbitrary bidirectional transmittance distribution as well
as a reflectance distribution. Both reflectance and transmittance are specified with the same function.

mod transfunc id

2+ brtd funcfile transform

0

6+ red green blue rspec trans tspec A7 ..

Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light. The
function brtd should integrate to 1 over each projected hemisphere.

BRTDfunc

The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.

mod BRTDfunc id

10+ rrefl grefl brefl
rtrns gtrns btrns
rbrtd gbrtd bbrtd
funcfile transform

0

9+ rfdif gfdif bfdif
rbdif gbdif bbdif
rtdif gtdif btdif
A10 ..

The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of

07/22/2025

-11-

the surface. The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular trans-
mission. The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle)
and compute the color coefficients for the directional diffuse part of reflection and transmission. As a spe-
cial case, three identical values of ’0’ may be given in place of these function names to indicate no direc-
tional diffuse component.

Unlike most other material types, the surface normal is not altered to face the incoming ray. Thus,
functions and variables must pay attention to the orientation of the surface and make adjustments appropri-
ately. However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP
and NzP are reoriented as if the ray hit the front surface for convenience.

A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front
side of the surface or rbdif, gbdif and bbdif for the back side. The diffuse transmittance (must be the same
for both sides by physical law) is given by rtdif, gtdif and btdif. A pattern will modify these diffuse scatter-
ing values, and will be available through the special variables CrP, CgP and CbP.

Care must be taken when using this material type to produce a physically valid reflection model. The
reflectance functions should be bidirectional, and under no circumstances should the sum of reflected dif-
fuse, transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse com-
ponent be greater than one.

Plasdata

Plasdata is used for arbitrary BRDF’s that are most conveniently given as interpolated data. The
arguments to this material are the data file and coordinate index functions, as well as a function to option-
ally modify the data values.

mod plasdata id
3+n+
func datafile
funcfile x1 x2 .. xn transform
0
4+ red green blue spec AS ..

The coordinate indices (xI, x2, etc.) are themselves functions of the x, y and z direction to the incident
light, plus the solid angle subtended by the light source (usually ignored). The data function (func) takes
five variables, the interpolated value from the n-dimensional data file, followed by the x, y and z direction
to the incident light and the solid angle of the source. The light source direction and size may of course be
ignored by the function.

Metdata

As metfunc is to plasfunc, metdata is to plasdata. Metdata takes the same arguments as plasdata, but
the specular component is modified by the given material color.

Transdata

Transdata is like plasdata but the specification includes transmittance as well as reflectance. The
parameters are as follows.

mod transdata id
3+n+
func datafile
funcfile x1 x2 .. xn transform
0
6+ red green blue rspec trans tspec A7 ..

BSDF

The BSDF material type loads an XML (eXtensible Markup Language) file describing a bidirectional
scattering distribution function. Real arguments to this material may define additional diffuse components
that augment the BSDF data. String arguments are used to define thickness for proxied surfaces and the
"up" orientation for the material.

07/22/2025

-12-

mod BSDF id
6+ thick BSDFfile ux uy uz funcfile transform
0
0131619
rfdif gfdif bfdif
rbdif gbdif bbdif
rtdif gtdif btdif

The first string argument is a "thickness" parameter that may be used to hide detail geometry being proxied
by an aggregate BSDF material. If a view or shadow ray hits a BSDF proxy with non-zero thickness, it will
pass directly through as if the surface were not there. Similar to the illum type, this permits direct viewing
and shadow testing of complex geometry. The BSDF is used when a scattered (indirect) ray hits the sur-
face, and any transmitted sample rays will be offset by the thickness amount to avoid the hidden geometry
and gather samples from the other side. In this manner, BSDF surfaces can improve the results for indirect
scattering from complex systems without sacrificing appearance or shadow accuracy. If the BSDF has
transmission and back-side reflection data, a parallel BSDF surface may be placed slightly less than the
given thickness away from the front surface to enclose the complex geometry on both sides. The sign of
the thickness is important, as it indicates whether the proxied geometry is behind the BSDF surface (when
thickness is positive) or in front (when thickness is negative).

The second string argument is the name of the BSDF file, which is found in the usual auxiliary locations.
The following three string parameters name variables for an "up" vector, which together with the surface
normal, define the local coordinate system that orients the BSDF. These variables, along with the thick-
ness, are defined in a function file given as the next string argument. An optional transform is used to scale
the thickness and reorient the up vector.

If no real arguments are given, the BSDF is used by itself to determine reflection and transmission. If there
are at least 3 real arguments, the first triplet is an additional diffuse reflectance for the front side. At least 6
real arguments adds diffuse reflectance to the rear side of the surface. If there are 9 real arguments, the final
triplet will be taken as an additional diffuse transmittance. All diffuse components as well as the non-dif-
fuse transmission are modified by patterns applied to this material. The non-diffuse reflection from either
side are unaffected. Textures perturb the effective surface normal in the usual way.

The surface normal of this type is not altered to face the incoming ray, so the front and back BSDF reflec-
tions may differ. (Transmission is identical front-to-back by physical law.) If back visibility is turned off
during rendering and there is no transmission or back-side reflection, only then the surface will be invisible
from behind. Unlike other data-driven material types, the BSDF type is fully supported and all parts of the
distribution are properly sampled.

aBSDF

The aBSDF material is identical to the BSDF type with two important differences. First, proxy
geometry is not supported, so there is no thickness parameter. Second, an aBSDF is assumed to have some
specular through component (the ’a’ stands for "aperture"), which is treated specially during the direct cal-
culation and when viewing the material. Based on the BSDF data, the coefficient of specular transmission
is determined and used for modifying unscattered shadow and view rays.

mod aBSDF id
5+ BSDFfile ux uy uz funcfile transform
0
0131619
rfdif gfdif bfdif
rbdif gbdif bbdif
rtdif gtdif btdif

If a material has no specular transmitted component, it is much better to use the BSDF type with a zero
thickness than to use aBSDF.

Antimatter

07/22/2025

-13-

Antimatter is a material that can "subtract" volumes from other volumes. A ray passing into an anti-
matter object becomes blind to all the specified modifiers:

mod antimatter id

N mod1 mod?2 .. modN
0

0

The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular
volume. If modl is void, the antimatter volume is completely invisible. If shading is desired at antimatter
surfaces, it is important that the related volumes are closed with outward-facing normals. Antimatter sur-
faces should not intersect with other antimatter boundaries, and it is unwise to use the same modifier in
nested antimatter volumes. The viewpoint must be outside all volumes concerned for a correct rendering.

2.1.3. Textures
A texture is a perturbation of the surface normal, and is given by either a function or data.
Texfunc
A texfunc uses an auxiliary function file to specify a procedural texture:
mod texfunc id
4+ xpert ypert zpert funcfile transform

0
n Al A2 .. An

Texdata
A texdata texture uses three data files to get the surface normal perturbations. The variables xfunc,
yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.

mod texdata id

8+ xfunc yfunc zfunc xdfname ydfname zdfname funcfile x0 x1 .. xf
0

n Al A2 .. An

2.14. Patterns
Patterns are used to modify the reflectance of materials. The basic types are given below.
Colorfunc
A colorfunc is a procedurally defined color pattern. It is specified as follows:
mod colorfunc id
4+ red green blue funcfile transform

0
n Al A2 .. An

Brightfunc
A brightfunc is the same as a colorfunc, except it is monochromatic.
mod brightfunc id
2+ refl funcfile transform

0
n Al A2 .. An

Colordata

Colordata uses an interpolated data map to modify a material’s color. The map is n-dimensional, and
is stored in three auxiliary files, one for each color. The coordinates used to look up and interpolate the
data are defined in another auxiliary file. The interpolated data values are modified by functions of one or

07/22/2025

-14-

three variables. If the functions are of one variable, then they are passed the corresponding color compo-
nent (red or green or blue). If the functions are of three variables, then they are passed the original red,
green, and blue values as parameters.

mod colordata id

7+n+
rfunc gfunc bfunc rdatafile gdatafile bdatafile
funcfile x1 x2 .. xn transform

0
mAl A2 .. Am
Brightdata
Brightdata is like colordata, except monochromatic.
mod brightdata id
3+n+

func datafile

funcfile x1 x2 .. xn transform
0
mAl A2 .. Am

Colorpict

Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the
RADIANCE picture format. The dimensions of the image data are determined by the picture such that the
smaller dimension is always 1, and the other is the ratio between the larger and the smaller. For example, a
500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).

mod colorpict id

T+
rfunc gfunc bfunc pictfile
funcfile u v transform
0
mAlA2 .. Am
Colortext

Colortext is dichromatic writing in a polygonal font. The font is defined in an auxiliary file, such as
helvet fnt. The text itself is also specified in a separate file, or can be part of the material arguments. The
character size, orientation, aspect ratio and slant is determined by right and down motion vectors. The
upper left origin for the text block as well as the foreground and background colors must also be given.

mod colortext id

2 fontfile textfile

0

15+
Ox Oy Oz
Rx Ry Rz
Dx Dy Dz
rfore gfore bfore
rback gback bback
[spacing]

or:

07/22/2025

-15-

mod colortext id
2+N fontfile . This is a line with N words ...

0

15+
Ox Oy Oz
Rx Ry Rz
Dx Dy Dz
rfore gfore bfore
rback gback bback
[spacing]

Brighttext

Brighttext is like colortext, but the writing is monochromatic.

mod brighttext id
2 fontfile textfile
0
11+
Ox Oy Oz
Rx Ry Rz
Dx Dy Dz
foreground background
[spacing]
or:
mod brighttext id
2+N fontfile . This is a line with N words ...
0
11+
Ox Oy Oz
Rx Ry Rz
Dx Dy Dz
foreground background
[spacing]

By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely
determined position. Unfortunately, such a scheme results in rather unattractive and difficult to read text
with most fonts. The optional spacing value defines the distance between characters for proportional spac-
ing. A positive value selects a spacing algorithm that preserves right margins and indentation, but does not
provide the ultimate in proportionally spaced text. A negative value insures that characters are properly
spaced, but the placement of words then varies unpredictably. The choice depends on the relative impor-
tance of spacing versus formatting. When presenting a section of formatted text, a positive spacing value is
usually preferred. A single line of text will often be accompanied by a negative spacing value. A section of
text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1 .fnt, calls for uniform
spacing. Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters)
and 0.3 (for wide spacing).

Spectrum

The spectrum primitive is the most basic type for introducing spectral color to a material. Since
materials only provide RGB parameters, spectral patterns are the only way to superimpose wavelength-
dependent behavior.

07/22/2025

-16-

mod spectrum id

0

0

5+ nmA nmB s1 s2 .. sN

The first two real arguments indicate the extrema of the spectral range in nanometers. Subsequent real val-
ues correspond to multipliers at each wavelength. The nmA wavelength may be greater or less than nmB,
but they may not be equal, and their ordering matches the order of the spectral values. A minimum of 3
values must be given, which would act more or less the same as a constant RGB multiplier. As with RGB
values, spectral quantities normally range between 0 and 1 at each wavelength, or average to 1.0 against a
standard sensitivity functions such as V(lambda). The best results obtain when the spectral range and num-
ber of samples match rendering options, though resampling will handle any differences, zero-filling
wavelenths outside the nmA to nmB range. A warning will be issued if the given wavelength range does
not adequately cover the visible spectrum.

Specfile

The specfile primitive is equivalent to the spectrum type, but the wavelength range and values are
contained in a 1-dimensional data file. This may be a more convenient way to specify a spectral color,
especially one corresponding to a standard illuminant such as D65 or a library of measured spectra.

mod specfile id
1 datafile

0

0

As with the spectrum type, rendering wavelengths outside the defined range will be zero-filled. Unlike the
spectrum type, the file may contain non-uniform samples.

Specfunc
The specfunc primitive offers dynamic control over a spectral pattern, similar to the colorfunc type.

mod specfunc id

2+ sfunc funcfile transform
0

2+ nmA nmB A3 ..

Like the spectrum primitive, the wavelength range is specified in the first two real arguments, and addi-
tional real values are set in the evaluation context. This function is fed a wavelenth sample between nmA
and nmB as its only argument, and it returns the corresponding spectral intensity.

Specdata
Specdata is like brightdata and colordata, but with more than 3 specular samples.

mod specdata id
3+n+
func datafile
funcfile x1 x2 .. xn transform
0
mAl A2 .. Am

The data file must have one more dimension than the coordinate variable count, as this final dimension cor-
responds to the covered spectrum. The starting and ending wavelengths are specified in "datafile" as well
as the number of spectral samples. The function "func" will be called with two parameters, the interpolated
spectral value for the current coordinate and the associated wavelength. If the spectrum is broken into 12
components, then 12 calls will be made to "func" for the relevant ray evaluation.

Specpict

Specpict is a special case of specdata, where the pattern is a hyperspectral image stored in the com-
mon-exponent file format. The dimensions of the image data are determined by the picture just as with the
colorpict primitive.

07/22/2025

-17-

mod specpict id

5+

func specfile

funcfile u v transform
0
mAl A2 .. Am

The function "func" is called with the interpolated pixel value and the wavelength sample in nanometers,
the same as specdata, with as many calls made as there are components in "specfile".

2.1.5. Mixtures

A mixture is a blend of one or more materials or textures and patterns. Blended materials should not
be light source types or virtual source types. The basic types are given below.

Mixfunc

A mixfunc mixes two modifiers procedurally. It is specified as follows:

mod mixfunc id

4+ foreground background vname funcfile transform
0

n Al A2 .. An

Foreground and background are modifier names that must be defined earlier in the scene description. If one
of these is a material, then the modifier of the mixfunc must be "void". (Either the foreground or back-
ground modifier may be "void", which serves as a form of opacity control when used with a material.)
Vname is the coefficient defined in funcfile that determines the influence of foreground. The background
coefficient is always (1-vname).

Mixdata
Mixdata combines two modifiers using an auxiliary data file:
mod mixdata id
5+n+
foreground background func datafile
funcfile x1 x2 .. xn transform

0
mAlA2 .. Am

Mixpict
Mixpict combines two modifiers based on a picture:

mod mixpict id

7+
foreground background func pictfile
funcfile u v transform

0

mAl A2 .. Am

The mixing coefficient function "func" takes three arguments, the red, green and blue values corresponding
to the pixel at (u,v).

Mixtext

Mixtext uses one modifier for the text foreground, and one for the background:

07/22/2025

-18-

mod mixtext id
4 foreground background fontfile textfile

0

9+
Ox Oy Oz
Rx Ry Rz
Dx Dy Dz
[spacing]

or:

mod mixtext id

44N
foreground background fontfile .
This is a line with N words ...

0

9+
Ox Oy Oz
Rx Ry Rz
Dx Dy Dz
[spacing]

2.2. Auxiliary Files

Auxiliary files used in textures and patterns are accessed by the programs during image generation.
These files may be located in the working directory, or in a library directory. The environment variable
RAYPATH can be assigned an alternate set of search directories. Following is a brief description of some
common file types.

2.2.1. Function Files

A function file contains the definitions of variables, functions and constants used by a primitive. The
transformation that accompanies the file name contains the necessary rotations, translations and scalings to
bring the coordinates of the function file into agreement with the world coordinates. The transformation
specification is the same as for the xform command. An example function file is given below:

{

This is a comment, enclosed in curly braces.
{Comments can be nested.}
¥
{ standard expressions use +,-,*,/,,(,) }
vname = Ny * func(Al) ;
{ constants are defined with a colon }
const : sqrt(P1/2) ;
{ user-defined functions add to library }
func(x) =5 + Al*sin(x/3) ;
{ functions may be passed and recursive }
rfunc(f x) = if(x f(x) f(-x)*rfunc(f,x+1)) ;
{ constant functions may also be defined }
cfunc(x) : 10¥x / sqrt(x) ;

Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
The following variables are particularly important:

07/22/2025

-19-

Dx, Dy, Dz - incident ray direction

Nx, Ny, Nz - surface normal at intersection point
Px, Py, Pz - intersection point

T - distance from start

Ts - single ray (shadow) distance

Rdot - cosine between ray and normal
arg(0) - number of real arguments

arg(i) - 1’th real argument

For mesh objects, the local surface coordinates are available:
Lu,Lv - local (u,v) coordinates

For BRDF types, the following variables are defined as well:

NxP, NyP, NzP - perturbed surface normal
RdotP - perturbed dot product
CrP, CgP, CbP - perturbed material color

A unique context is set up for each file so that the same variable may appear in different function files with-
out conflict. The variables listed above and any others defined in rayinit.cal are available globally. If no
file is needed by a given primitive because all the required variables are global, a period (‘.’) can be given in
place of the file name. It is also possible to give an expression instead of a straight variable name in a scene
file. Functions (requiring parameters) must be given as names and not as expressions.

Constant expressions are used as an optimization in function files. They are replaced wherever they
occur in an expression by their value. Constant expressions are evaluated only once, so they must not con-
tain any variables or values that can change, such as the ray variables Px and Ny or the primitive argument
function arg(). All the math library functions such as sqrt() and cos() have the constant attribute, so they
will be replaced by immediate values whenever they are given constant arguments. Thus, the subexpression
cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342, and does not cause any additional over-
head in the calculation.

It is generally a good idea to define constants and variables before they are referred to in a function
file. Although evaluation does not take place until later, the interpreter does variable scoping and constant
subexpression evaluation based on what it has compiled already. For example, a variable that is defined
globally in rayinit.cal then referenced in the local context of a function file cannot subsequently be rede-
fined in the same file because the compiler has already determined the scope of the referenced variable as
global. To avoid such conflicts, one can state the scope of a variable explicitly by preceding the variable
name with a context mark (a back-quote) for a local variable, or following the name with a context mark for
a global variable.

2.2.2. Data Files

Data files contain n-dimensional arrays of real numbers used for interpolation. Typically, definitions
in a function file determine how to index and use interpolated data values. The basic data file format is as
follows:

N
begl endl m1
00m2x2.1x2.2x2.3%x24..x2.m2

begN endN mN
DATA, later dimensions changing faster.

N is the number of dimensions. For each dimension, the beginning and ending coordinate values and the
dimension size is given. Alternatively, individual coordinate values can be given when the points are not
evenly spaced. These values must either be increasing or decreasing monotonically. The data is
m1*m2*.. *mN real numbers in ASCII form. Comments may appear anywhere in the file, beginning with a
pound sign (’#’) and continuing to the end of line.

07/22/2025

-20-

2.2.3. Font Files

A font file lists the polygons which make up a character set. Comments may appear anywhere in the
file, beginning with a pound sign ("#’) and continuing to the end of line. All numbers are decimal integers:

code n
x0 y0
x1yl

Xn yn

The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically con-
nected to the first. Separate polygonal sections are joined by coincident sides. The character coordinate
system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).

2.3. Generators

A generator is any program that produces a scene description as its output. They usually appear as
commands in a scene description file. An example of a simple generator is genbox. Genbox takes the argu-
ments of width, height and depth to produce a parallelepiped description. Genprism takes a list of 2-dimen-
sional coordinates and extrudes them along a vector to produce a 3-dimensional prism. Genrev is a more
sophisticated generator that produces an object of rotation from parametric functions for radius and axis
position. Gensurf tessellates a surface defined by the parametric functions x(s.t), y(s.t), and z(s,t). Gen-
worm links cylinders and spheres along a curve. Gensky produces a sun and sky distribution corresponding
to a given time and date.

Xform is a program that transforms a scene description from one coordinate space to another. Xform
does rotation, translation, scaling, and mirroring.

3. Image Generation

Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional
image from a given perspective.

The image generating programs use an octree to efficiently trace rays through the scene. An octree
subdivides space into nested octants which contain sets of surfaces. In RADIANCE, an octree is created
from a scene description by oconv. The details of this process are not important, but the octree will serve as
input to the ray-tracing programs and directs the use of a scene description.

Rview is ray-tracing program for viewing a scene interactively. When the user specifies a new per-
spective, rview quickly displays a rough image on the terminal, then progressively increases the resolution
as the user looks on. He can select a particular section of the image to improve, or move to a different view
and start over. This mode of interaction is useful for debugging scenes as well as determining the best view
for a final image.

Rpict produces a high-resolution picture of a scene from a particular perspective. This program fea-
tures adaptive sampling, crash recovery and progress reporting, all of which are important for time-consum-
ing images.

A number of filters are available for manipulating picture files. Pfilt sets the exposure and performs
anti-aliasing. Pcompos composites (cuts and pastes) pictures. Pcond conditions a picture for a specific dis-
play device. Pcomb performs arbitrary math on one or more pictures. Protate rotates a picture 90 degrees
clockwise. Pflip flips a picture horizontally, vertically, or both (180 degree rotation). Pvalue converts a pic-
ture to and from simpler formats.

Pictures may be displayed directly under X11 using the program ximage, or converted a standard
image format. Ra_bmp converts to and from Microsoft Bitmap images. Ra_ppm converts to and from
Poskanzer Portable Pixmap formats. Ra_ps converts to PostScript color and greyscale formats. Ra_rgbe
converts to and from Radiance uncompressed picture format. Ra_t/6 converts to and from Targa 16 and
24-bit image formats. Ra_t8 converts to and from Targa 8-bit image format. Ra_tiff converts to and from
TIFF. Ra_xyze converts to and from Radiance CIE picture format.

07/22/2025

21-

4. License

The Radiance Software License, Version 2.0

Radiance v6.0 Copyright (c) 1990 to 2025, The Regents of the University of
California, through Lawrence Berkeley National Laboratory (subject to receipt
of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches,
or upgrades to the features, functionality or performance of the source

code ("Enhancements") to anyone; however, if you choose to make your
Enhancements available either publicly, or directly to Lawrence Berkeley
National Laboratory, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license: a
non-exclusive, royalty-free perpetual license to install, use, modify,

prepare derivative works, incorporate into other computer software,
distribute, and sublicense such enhancements or derivative works thereof,
in binary and source code form.

5. Acknowledgements

This work was supported by the Assistant Secretary of Conservation and Renewable Energy, Office
of Building Energy Research and Development, Buildings Equipment Division of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

Additional work was sponsored by the Swiss federal government under the Swiss LUMEN Project
and was carried out in the Laboratoire d’Energie Solaire (LESO Group) at the Ecole Polytechnique Fed-
erale de Lausanne (EPFL University) in Lausanne, Switzerland.

07/22/2025

22~

6. References

Ward, Gregory J., Bruno Bueno, David Geisler-Moroder, Lars O. Grobe, Jacob C. Jonsson, Eleanor S. Lee,
Taoning Wang, Helen Rose Wilson, “Daylight Simulation Workflows Incorporating Measured Bidirec-
tional Scattering Distribution Functions,” Energy & Buildings, Vol. 259, No. 111890, 2022.

Wang, Taoning, Gregory Ward, Eleanor Lee, “Efficient modeling of optically-complex, non-coplanar exte-
rior shading: Validation of matrix algebraic methods,” Energy & Buildings, vol. 174, pp. 464-83, Sept.
2018.

Lee, Eleanor S., David Geisler-Moroder, Gregory Ward, “Modeling the direct sun component in buildings
using matrix algebraic approaches: Methods and validation,” SolarEnergy, vol. 160, 15 January 2018, pp
380-395.

Ward, G., M. Kurt & N. Bonneel, “Reducing Anisotropic BSDF Measurement to Common Practice,”
Material Workshopon 2014.

McNeil, A., CJ. Jonsson, D. Appelfeld, G. Ward, E.S. Lee, “A validation of a ray-tracing tool used to gen-
erate bi-directional scattering distribution functions for complex fenestration systems,” Solar Energy, 98,
404-14, November 2013.

Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson, *“Simulating the Daylight Performance of Complex
Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance,” Leukos,
7(4), April 2011.

Cater, K., A. Chalmers, G. Ward, “Detail to Attention: Exploiting Visual Tasks for Selective Rendering,”
Eurograhics Symposium on Rendering, June 2003.

Ward, G., Elena Eydelberg-Vileshin, “Picture Perfect RGB Rendering Using Spectral Prefiltering and
Sharp Color Primaries,” 13th Eurographics Workshop on Rendering, P. Debevec and S. Gibson (Editors),
June 2002.

Ward, G. and M. Simmons, “The Holodeck Ray Cache: An Interactive Rendering System for Global Illu-
mination in Nondiffuse Environments,” ACM Transactions on Graphics, 18(4):361-98, October 1999.
Larson, G.W., H. Rushmeier, C. Piatko, “A Visibility Matching Tone Reproduction Operator for High
Dynamic Range Scenes,” IEEE Transactions on Visualization and Computer Graphics, 3(4), 291-306,
December 1997.

Ward, G., “Making Global Illumination User Friendly,” Sixth Eurographics Workshop on Rendering, pro-
ceedings to be published by Springer-Verlag, Dublin, Ireland, June 1995.

Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust, “Comparing Real and Synthetic Images: Some
Ideas about Metrics,” Sixth Eurographics Workshop on Rendering, proceedings to be published by
Springer-Verlag, Dublin, Ireland, June 1995.

Ward, G., “The Radiance Lighting Simulation and Rendering System,” Computer Graphics, Orlando, July
1994.

Rushmeier, H., G. Ward, “Energy-Preserving Non-Linear Filters,” Computer Graphics, Orlando, July
1994.

Ward, G., “A Contrast-Based Scalefactor for Luminance Display,” Graphics Gems IV, Edited by Paul
Heckbert, Academic Press 1994.

Ward, G., “Measuring and Modeling Anisotropic Reflection,” Computer Graphics, Chicago, July 1992.

Ward, G., P. Heckbert, “Irradiance Gradients,” Third Annual Eurographics Workshop on Rendering, to be
published by Springer-Verlag, held in Bristol, UK, May 1992.

Ward, G., “Adaptive Shadow Testing for Ray Tracing,” Second Annual Eurographics Workshop on Render-
ing, to be published by Springer-Verlag, held in Barcelona, SPAIN, May 1991.

Ward, G., “Visualization,” Lighting Design and Application, Vol. 20, No. 6, June 1990.

Ward, G., F. Rubinstein, R. Clear, “A Ray Tracing Solution for Diffuse Interreflection,” Computer Graph-
ics, Vol. 22, No. 4, August 1988.

07/22/2025

23

Ward, G., F. Rubinstein, “A New Technique for Computer Simulation of Illuminated Spaces,” Journal of
the Illuminating Engineering Society, Vol. 17, No. 1, Winter 1988.

07/22/2025

