
PCOMB(1) PCOMB(1)

NAME
pcomb - combine RADIANCE pictures and/or float matrices

SYNOPSIS
pcomb [-h][-w][-ff][−x xres][−y yres][−f file][−e expr] [[-o][−s factor][−c r g b] input ..]

DESCRIPTION
Pcomb combines equal-sized RADIANCE pictures or raw float matrices and sends the result to the stan-
dard output. By default, the result is just a linear combination of the input pixels multiplied by −s and −c
coefficients, but an arbitrary mapping can be assigned with the −e and −f options, similar to rcalc(1). (The
variable and function definitions in each −f source file are read and compiled from the RADIANCE library
where it is found.) Negative coefficients and functions are allowed, and pcomb will produce color values
of zero where they would be negative unless the −ff option is used to specify floating-point matrix output.

The variables ro, go and bo specify the red, green and blue output values, respectively. Alternatively, the
single variable lo can be used to specify a brightness value for black and white output. The predefined
functions ri(n), gi(n) and bi(n) give the red, green and blue values for input n. To access a pixel that is
nearby the current one, these functions also accept optional x and y offsets. For example, ri(3,-2,1) would
return the red component of the pixel from input 3 that is left 2 and up 1 from the current position.
Although x offsets may be as large as width of the input, y offsets are limited to a small window (+/- 32
pixels) due to efficiency considerations. However, it is not usually necessary to worry about this problem --
if the requested offset is not available, the next best pixel is returned instead.

For additional convenience, the function li(n) is defined as the input brightness for input n. This function
also accepts x and y offsets.

The constant nfiles gives the number of input files present, and WE gives the white efficacy (lumens/bright-
ness) for pixel values, which may be used with the −o option or the le(n) values to convert to absolute pho-
tometric units (see below). The variables x and y give the current output pixel location for use in spatially
dependent functions, the constants xmax and ymax give the input resolution, and the constants xres and
yres give the output resolution (usually the same, but see below). The constant functions re(n), ge(n),
be(n), and le(n) give the exposure values for input n, and pa(n) gives the corresponding pixel aspect ratio.
Exposure values will be set to 1.0 for inputs with the −o option set. Finally, for inputs with stored view
parameters, the functions Ox(n), Oy(n) and Oz(n) return the ray origin in world coordinates for the current
pixel in input n, and Dx(n), Dy(n) and Dz(n) return the normalized ray direction. In addition, the function
T(n) returns the distance from the origin to the aft clipping plane (or zero if there is no aft plane), and the
function S(n) returns the solid angle of the current pixel in steradians (always zero for parallel views). If
the current pixel is outside the view region, T(n) will return a negative value, and S(n) will return zero. The
first input input with a view is assumed to correspond to the view of the output, which is written into the
header.

The −h option may be used to reduce the information header size, which can grow disproportionately after
multiple runs of pcomb and/or pcompos(1). The −w option can be used to suppress warning messages
about invalid calculations. The −o option indicates that original pixel values are to be used for the next
input, undoing any previous exposure changes or color correction.

The −x and −y options can be used to specify the desired output resolution, xres and yres, and can be
expressions involving other constants such as xmax and ymax. The constants xres and yres may also be
specified in a file or expression. The default output resolution is the same as the input resolution.

The −x and −y options must be present if there are no input files, when the definitions of ro, go and bo will
be used to compute each output pixel. This is useful for producing simple test inputs for various purposes.
(Theoretically, one could write a complete renderer using just the functional language...)

The standard input can be specified with a hyphen (’-’). A command that produces a RADIANCE picture
or float matrix can be given in place of a file by preceeding it with an exclamation point (’!’).

EXAMPLES
To produce a picture showing the difference between pic1 and pic2:

RADIANCE 8/31/96 1

PCOMB(1) PCOMB(1)

pcomb −e "ro=ri(1)−ri(2);go=gi(1)−gi(2);bo=bi(1)−bi(2)" pic1 pic2 > diff

Or, more efficiently:

pcomb pic1 −s −1 pic2 > diff

To precompute the gamma correction for a picture:

pcomb −e "ro=ri(1)ˆ.4;go=gi(1)ˆ.4;bo=bi(1)ˆ.4" inp.hdr > gam.hdr

To perform some special filtering:

pcomb −f myfilt.cal −x xmax/2 −y ymax/2 input.hdr > filtered.hdr

To make a picture of a dot:

pcomb −x 100 −y 100 −e "ro=b;go=b;bo=b;b=if((x-50)ˆ2+(y-50)ˆ2−25ˆ2,0,1)" > dot

Use a depth buffer to superimpose 3-D gridlines on rendered image:

rcollate -hi -ff -o 3000x3000 raw_orig.zbf | pcomb -e "frac(x):x-floor(x);EPS:.0001" -e
"t=gi(2);Px=Ox(1)+t*Dx(1)-EPS;Py=Oy(1)+t*Dy(1)-EPS;Pz=Oz(1)+t*Dz(1)-EPS" -e
"Rg:0;Gg:0;Bg:1;gsiz:0.03" -e "ingr=gsiz-min(frac(Px),frac(Py),frac(Pz))" -e
"ro=if(ingr,Rg,ri(1));go=if(ingr,Gg,gi(1));bo=if(ingr,Bg,bi(1))" raw_orig.hdr - > trans_def_grid.hdr

ENVIRONMENT
RAYPATH the directories to check for auxiliary files.

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), icalc(1), pcompos(1), pfilt(1), pvalue(1), pvsum(1), rcalc(1), rcollate(1), rcomb(1), rmtxop(1),
rpict(1)

RADIANCE 8/31/96 2

