THE FUTURE OF RADIANCE

Greg Ward, Anyhere Software
Taoning Wang, Lawrence Berkeley National Laboratory
August 2022

FIRST, ABIT OF HISTORY....

« Grew out of after-hours project at LBL to explore ray-tracing for lighting simulation
* Radiance is named after the radiometric unit corresponding to a pixel
* Indirect irradiance cache made it first practical physically-based ray-tracer (’87)
* Original source code distribution predates ANSI-C
« Based on Kernighan & Ritchie standard, so no function prototypes
» Most (but not all) code has been brought up to date with C conventions
* Development has been evolutionary -- no complete rewrites at any point
« Many tools added over time, some retired (e.g., dot-matrix printer drivers)
» RGBE picture format was one of the earliest innovations

« Enabled HDR imaging, including capture and image-based lighting

NOW, THE STATUS QUO

* Radiance as it exists is validated, stable, supported on multiple platforms, and will be
maintained by myself and others as long as there is interest in it

It will continue to be useful in energy calculations, as a benchmark, and as an ingredient
to other software

« DOE funding has been consistent but not constant over time, and may be waning
« There are alternative lighting tools (as always) and many are highly optimized
« The main strengths of Radiance are versatility and veracity (or validation, pick your ‘v’)

« Some of the code is new, but some code is 36 years old

SYSTEM DESIGN AND CONSTRAINTS

Single developer for multiple platforms, so focus on low-maintenance portability

« “Least common denominator” approach -- relied mostly on standard C library

* Minimize use of #ifdef's and system dependencies

Unix toolbox model:
« Specialized tools communicating with well-defined file formats
 File formats are standardized and (mostly) portable across architectures

« Offers great flexibility -- adapts easily to new new applications

Scene description language designed to be easy to read & write with printf() & scanf()

» Less easy to read with eyeballs

Later addition of “executive” tools such as rad to manage renderings, etc.

THINGS THAT WORKED WELL FOR RADIANCE

« Sharing source code and interacting with a broad research & design community

* Free/unrestricted source that can be understood and altered if necessary

« E-mail questions usually got answered in a day or two

 Contributions as well as critiques, suggestions & bug fixes came from many

 Independent validation critical to acceptance and long-term value of simulation
* Unix toolbox model and standardized/portable file formats

» Separate executables simplifies development and maintenance

 Standard formats can be adapted and adopted by others (e.g., HDR pictures)

« Stable design allows long-term collaborations, incorporation into other software

THINGS WE WISH WERE DIFFERENT

» Scene description format is clunky and not as general or extensible as it should be
* E.g., RGB color model is “baked in” to material types, so no spectral specifications
« MGF and similar description languages are potentially more powerful

« Single-developer model makes participation, progress slow
« We need a way for coders to addand test new methods without breaking old ones
 Unix toolbox is current model, but core simulation is too big for one module

* An updated system design (C++ library) would provide better modularity in core tools
» Multiple rendering objects would provide more portable parallelization

 Re-organization of rendering problem could enable GPU implementations

TIMING

* As we said, Radiance is not going anywhere
* Which is also part of the problem
« The question is: where would we like it to go?
» The time to plan for the future is now
« We have a community:
* We can continue to help each other and benefit from collaboration

« We can apply our collective expertise to new challenges

SHARE YOUR PERSPECTIVE

« What are your current pain points?
* As aresearcher?
* Apractitioner?
* Asoftware developer?
« What’s your perfect ‘Radiance’?
* E.g. how fast is it?
« GPU-enabled?
* Flexible and scriptable?
* More accurate?

« What would be your most important new feature/addition?

MOVING FORWARD

* How do we want to develop Radiance?

« How do we want to manage development?

» How do we deal with branches, variants?
* How do we want to fund Radiance?

* Are there good self-sustaining models? Donations? Fees?
* How do we want to share Radiance?

« What should the license look like?

	The Future of Radiance
	First, a Bit of History…
	Now, the Status Quo
	System Design and Constraints
	Things That Worked Well for Radiance
	Things We Wish Were Different
	Timing	
	Share Your Perspective
	Moving Forward	

