
Greg Ward, Anyhere Software

Taoning Wang, Lawrence Berkeley National Laboratory

August 2022

THE FUTURE OF RADIANCE



FIRST, A BIT OF HISTORY…
• Grew out of after-hours project at LBL to explore ray-tracing for lighting simulation

• Radiance is named after the radiometric unit corresponding to a pixel
• Indirect irradiance cache made it first practical physically-based ray-tracer (’87)

• Original source code distribution predates ANSI-C

• Based on Kernighan & Ritchie standard, so no function prototypes

• Most (but not all) code has been brought up to date with C conventions

• Development has been evolutionary -- no complete rewrites at any point

• Many tools added over time, some retired (e.g., dot-matrix printer drivers)

• RGBE picture format was one of the earliest innovations

• Enabled HDR imaging, including capture and image-based lighting



NOW, THE STATUS QUO
• Radiance as it exists is validated, stable, supported on multiple platforms, and will be 

maintained by myself and others as long as there is interest in it

• It will continue to be useful in energy calculations, as a benchmark, and as an ingredient 
to other software

• DOE funding has been consistent but not constant over time, and may be waning

• There are alternative lighting tools (as always) and many are highly optimized

• The main strengths of Radiance are versatility and veracity (or validation, pick your ‘v’)

• Some of the code is new, but some code is 36 years old



SYSTEM DESIGN AND CONSTRAINTS
• Single developer for multiple platforms, so focus on low-maintenance portability

• “Least common denominator” approach -- relied mostly on standard C library

• Minimize use of #ifdef’s and system dependencies

• Unix toolbox model:

• Specialized tools communicating with well-defined file formats

• File formats are standardized and (mostly) portable across architectures

• Offers great flexibility -- adapts easily to new new applications

• Scene description language designed to be easy to read & write with printf() & scanf()

• Less easy to read with eyeballs

• Later addition of “executive” tools such as rad to manage renderings, etc.



THINGS THAT WORKED WELL FOR RADIANCE
• Sharing source code and interacting with a broad research & design community

• Free/unrestricted source that can be understood and altered if necessary

• E-mail questions usually got answered in a day or two

• Contributions as well as critiques, suggestions & bug fixes came from many

• Independent validation critical to acceptance and long-term value of simulation

• Unix toolbox model and standardized/portable file formats

• Separate executables simplifies development and maintenance

• Standard formats can be adapted and adopted by others (e.g., HDR pictures)

• Stable design allows long-term collaborations, incorporation into other software



THINGS WE WISH WERE DIFFERENT
• Scene description format is clunky and not as general or extensible as it should be

• E.g., RGB color model is “baked in” to material types, so no spectral specifications

• MGF and similar description languages are potentially more powerful

• Single-developer model makes participation, progress slow

• We need a way for coders to addand test new methods without breaking old ones

• Unix toolbox is current model, but core simulation is too big for one module

• An updated system design (C++ library) would provide better modularity in core tools

• Multiple rendering objects would provide more portable parallelization

• Re-organization of rendering problem could enable GPU implementations



TIMING

• As we said, Radiance is not going anywhere

• Which is also part of the problem

• The question is: where would we like it to go?

• The time to plan for the future is now

• We have a community:

• We can continue to help each other and benefit from collaboration

• We can apply our collective expertise to new challenges



SHARE YOUR PERSPECTIVE
• What are your current pain points?

• As a researcher?

• A practitioner?

• A software developer?

• What’s your perfect ‘Radiance’?

• E.g. how fast is it?

• GPU-enabled?

• Flexible and scriptable?

• More accurate?

• What would be your most important new feature/addition?



MOVING FORWARD
• How do we want to develop Radiance?

• How do we want to manage development?

• How do we deal with branches, variants?

• How do we want to fund Radiance?

• Are there good self-sustaining models?  Donations?  Fees?

• How do we want to share Radiance?

• What should the license look like?


	The Future of Radiance
	First, a Bit of History…
	Now, the Status Quo
	System Design and Constraints
	Things That Worked Well for Radiance
	Things We Wish Were Different
	Timing	
	Share Your Perspective
	Moving Forward	

