Calculating spatial efficiency of indoor lighting using lighting application efficacy framework

Parisa Mahmoudzadeh; Pennsylvania State University

Dr. Wenye Hu; University of Sydney

Dr. Wendy Davis; University of Sydney

Dr. Alp Durmus; Pennsylvania State University

20th International Radiance Workshop Toronto, Canada

August 4, 2022

ARCHITECTURAL ENGINEERING

Outline

- Introduction
 - Spatial efficiency basics
 - Procedure map
- Methods
 - Variables
 - Radiance functions
 - Room, material, luminaire setup
 - Calculation settings
- Results
- Future study
- Documentation

- Lighting application efficacy (LAE): light that contributes to visual perception
- Spatial efficiency: the proportion of light emitted by the luminaires that reflect off surfaces and ultimately reach the eyes of occupants.

Figure 1. The light that contributes to visual perception.

Procedure map for the spatial efficiency calculations

Part I: Definition	Part II: Development	Part III: Simulation	Part IV: Calculation	Part V: Analysis
Section I: independent variables	Section I: defining specific independent variables such as the calculation points and luminaire coordinates	Section I: Acquire irradiance RGB values in calculation points for each simulation condition defined in Part	Section I: Calculating spatial efficiency values for task surfaces in each each simulation condition	Section I: Analyzing the effect of each independent variable on spatial efficiency
	Python	Radiance	Excel	Excel/Python
	Section II: Establishing an automated process to execute simulations with Radiance Lighting for different sets of variables consecutively			Section II: Sub-analyzing the effect of each independent variable on spatial efficiency in categories
	Python			Excel/Python

Spatial efficiency (unitless) =

Radiant flux (watts) at the work plane level

Input power of the luminaires (watts)

(R+G+B values for Irradiance (watts/m^2)) x (Area of the work plane (m^2))

Input power of the luminaires

 \odot Room dimensions

 \odot Reflectance levels of surfaces inside the room

Luminaire types, numbers, and placement

 \odot Work plane size and calculation points

Fundamental Radiance programs

- 1. Creating a room: 'genbox' (feasible through different programs)
- 2. Converting any number of luminaire IES data files to a readable files by Radiance: 'ies2rad'
- 3. Placing the luminaires in the desired position: 'xform'
- 4. Creating an octree from the Radiance scene descriptions: 'oconv'
- 5. Tracing rays in the Radiance scene: 'rtrace'
 - rtrace with the "I" option which will compute irradiance rather than radiance, with the input origin and direction interpreted instead as measurement point and orientation

Room setup

Reflectance levels (gray scale):

Luminaire setup

ies2rad 6-inch-downlight.ies

xform -t 2.5 2.5 3 6-inch-downlight.rad > luminaire_transformed.rad

xform -t 7.5 7.5 3 6-inch-downlight.rad >> luminaire_transformed.rad

Calculation settings

• Octree file:

1

Oconv luminaire_transformed.rad room10.rad > room10.oct

• Calculating irradiance:

• Rendering the scene (optional):

3 rvu -as 1024 -ar 100 -aa 0.1 -ab 50 room10.oct

Calculation settings

• Calculating irradiance:

• Calculation points' coordinates:

Automating the process

Figure 2. Python code for automating the simulation process.

C:\windows\system32\cmd.exe

Figure 3. Rendering process for a simulation condition.

• Optimizing design features so that spatial efficiency values are closer to 1 or 100%

Future study

- Implementing the effect of the human eye field of view sensitivity to brightness to spatial efficiency values using 'rsensor' program
- 'rsensor' traces rays outward from sensors into the Radiance scene given by octree, sending the computed sensor value to the standard output

Figure 4. Human field of view and brightness perception.

- [Access link to input files]
- The LAE project has been funded by the U.S. Department of Energy.
- Contact: parissa@psu.edu