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A Preface: Users & Applications

In general: tools and software: different users, different priorities:

Academics:
career, papers, curiosity

Institutes:
continuous struggle to fund the group’s employees and fight for floor space

Consultants:
competitive selling point,
foreseeable project costs,
reliability of results & liability to client

Inter-Understanding is a little low, fruitful collaboration often difficult.
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Motivation for Material Models

From the very simple to the complex:
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Motivation for Material Models

From the very simple to the complex:

simply differentiate the surfaces in a model

reproduce the ”looks” of a real material

glare analysis

indoor light levels: shading analysis with [opaque|glass] surfaces

model light transport: light shelves, light pipes
⇝ related topics: ambient calculation , Photon Map extension

Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 4 / 21



The BSDF mathematics (BSDF , BRDF, BRTF, ...)

Bidirectional Scatter Distribution Function more maths: pab talk at RADIANCE Workshop 2010

at a surface element on a material:
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The BSDF mathematics (BSDF , BRDF, BRTF, ...)

Bidirectional Scatter Distribution Function more maths: pab talk at RADIANCE Workshop 2010

at a surface element on a material:
attach coordinate system
let x⃗ denote a 3D direction, e.g. with spherical coordinates (¹, ϕ)
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The BSDF mathematics (BSDF , BRDF, BRTF, ...)

Bidirectional Scatter Distribution Function more maths: pab talk at RADIANCE Workshop 2010

at a surface element on a material:
attach coordinate system
let x⃗ denote a 3D direction, e.g. with spherical coordinates (¹, ϕ)

let Ω denote a solid angle
let L(x⃗) denote Radiance, [ Watt

sr m2 ]
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Bidirectional Scatter Distribution Function more maths: pab talk at RADIANCE Workshop 2010

at a surface element on a material:
attach coordinate system
let x⃗ denote a 3D direction, e.g. with spherical coordinates (¹, ϕ)

let Ω denote a solid angle
let L(x⃗) denote Radiance, [ Watt

sr m2 ]

Lin incident to a surface element, Lout outgoing from a surface element
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Bidirectional Scatter Distribution Function more maths: pab talk at RADIANCE Workshop 2010

at a surface element on a material:
attach coordinate system
let x⃗ denote a 3D direction, e.g. with spherical coordinates (¹, ϕ)
let Ω denote a solid angle
let L(x⃗) denote Radiance, [ Watt
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Lin incident to a surface element, Lout outgoing from a surface element

let
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then
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Bidirectional Scatter Distribution Function more maths: pab talk at RADIANCE Workshop 2010

at a surface element on a material:
attach coordinate system
let x⃗ denote a 3D direction, e.g. with spherical coordinates (¹, ϕ)
let Ω denote a solid angle
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Ωin=2Ã∫
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BSDF (x⃗in, x⃗out) cos(¹out) Lin(x⃗in) dΩin

depends on 4 scalar variables: BSDF (x⃗in, x⃗out) = BSDF (¹in, ϕin, ¹out , ϕout)
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The BSDF mathematics (BSDF , BRDF, BRTF, ...)

Bidirectional Scatter Distribution Function more maths: pab talk at RADIANCE Workshop 2010

at a surface element on a material:
attach coordinate system
let x⃗ denote a 3D direction, e.g. with spherical coordinates (¹, ϕ)
let Ω denote a solid angle
let L(x⃗) denote Radiance, [ Watt

sr m2 ]
Lin incident to a surface element, Lout outgoing from a surface element

let
Ωin=2Ã∫

x⃗in

... f (x⃗)... dΩ describe an integral of a function f over the hemisphere

then

BSDF def: Lout(x⃗out) =
Ωin=2Ã∫

x⃗in

BSDF (x⃗in, x⃗out) cos(¹out) Lin(x⃗in) dΩin

depends on 4 scalar variables: BSDF (x⃗in, x⃗out) = BSDF (¹in, ϕin, ¹out , ϕout)

BSDF ∈ [0 : ∞] , yet integral enforced by Ädh < 1 , ”diffuse” material: BSDF = const
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types of BSDF models in Computer Graphics

classical BSDF model:
built-in functions with parameters
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types of BSDF models in Computer Graphics

classical BSDF model:
built-in functions with parameters

user defined ”function files”,
evaluated at runtime at each ray-material intersection,
similar to newer concept of a ”shader language”

newer concepts: ”data driven”
actually: ”automatic” models with a set set of built-in functions
or no functions at all

BSDF can (and should) be measured "in-vitro" in a lab

BSDF can be visualised, analysed, compared and understood on its own
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Tool-time: Measuring the BSDF

scanning gonio-photometers, e.g. pab PG2
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Tool-time: Measuring the BSDF

scanning gonio-photometers, e.g. pab PG2

image based gonio-photometers
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Tool-time: Visualising the BSDF

plotting hemispherical BSDF for one incident (θin, φin) with mountain

natural rubber floor-tile, orthogonal view
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Tool-time: Visualising the BSDF

plotting hemispherical BSDF for one incident (θin, φin) with mountain

natural rubber floor-tile,

clear twin-wall plastic

aluminium roof material
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RADIANCE Rendering and Materials

Results of your material modelling may be affected by how RADIANCE works:

objects are either emitting-sources or passive surfaces.
Advantage during rendering: list of known sources to check for.
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RADIANCE Rendering and Materials

Results of your material modelling may be affected by how RADIANCE works:

objects are either emitting-sources or passive surfaces.
Advantage during rendering: list of known sources to check for.

is basically a backward-raytracer: from eye to sources
disadvantage: hard to find ray-paths with near-specular surfaces in-between

⇝ remember to set rpict parameters well, and/or use pmap (PhotonMap) extension
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Material Types in RADIANCE

light sources
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• light

• spotlight

• glow



Material Types in RADIANCE

light sources

passive materials with parameters
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• classical, Ward, Gaussian lobe + constant:
plastic, metal, trans

asymmetric versions:
plastic2, metal2, trans2

• classical transparent non-scattering:
glass, dielectric, interface

• newer:
ashik2



Material Types in RADIANCE

light sources

passive materials with parameters

passive materials with function file or data
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• legacy:
plasfunc, metfunc, transfunc, brtdfunc: function file
plasdata, metdata, transdata: data, but linear interpolation only

• newer:
BSDF , XML based, ”tensor-tree”, lobe-based interpolation

aBSDF with extra, limited, peak-handling



Material Types in RADIANCE

light sources

passive materials with parameters

passive materials with function file or data

”patterns”: modifications of a material parameter (e.g. colour)
e.g.: to map a picture onto a mesh or a polygon
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• materials with user supplied functions

– brightfunc, colorfunc, transfunc, mixfunc

• material models using data-files with linear interpolation

– colordata, brightdata, colorpict

– colortext, brighttext

– plasdata, metdata, transdata

void colorpict p1
...

p1 plastic mymat

mymat polygon p1

...

...
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Material Types in RADIANCE

light sources

passive materials with parameters

passive materials with function file or data

”patterns”: modifications of a material parameter (e.g. colour)
e.g.: to map a picture onto a mesh or a polygon

”textures”: modifications of the surface normal
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• texfunc, texdata

n⃗
n⃗new

void texfunc p1

p1 plastic mymat
...

...
mymat polygon p1

...



Material Types in RADIANCE

light sources

passive materials with parameters

passive materials with function file or data

”patterns”: modifications of a material parameter (e.g. colour)
e.g.: to map a picture onto a mesh or a polygon

”textures”: modifications of the surface normal
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background image: teWhare, Lake Tarawera, NZ, pab, January 2015



Material Types in RADIANCE

light sources

passive materials with parameters

passive materials with function file or data

”patterns”: modifications of a material parameter (e.g. colour)
e.g.: to map a picture onto a mesh or a polygon

”textures”: modifications of the surface normal

materials with special ”side effects” during rendering
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antimatter : subtract a volume (entry-level CSG)

illum : envelop a complex geometry (e.g. light-redirecting glazing)

mirror : secondary light sources (mirror images of sources)

mist : participating media, volume scattering

prism : legacy special for prismatic glazing



Parametric Materials: plastic, metal

The all-time favourite: plastic

function type: Gaussian + constant
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slide from my talk at RADIANCE Workshop 2004:

http://bme.pab.eu


Parametric Materials: plastic, metal

The all-time favourite: plastic

function type: Gaussian + constant
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data source, 2011 : http://bme.pab.eu:
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source: pab Ltd , www.pab.eu

incident angle (30,0)

model ward_plastic

mid 3252
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outgoing angle [deg]

model "ward_plastic" , sample "bme-fm-lam1" 

RGB= 0.51 specularity=0.031 roughness=0.092

http://bme.pab.eu


Parametric Materials: plastic, metal

The all-time favourite: plastic

function type: Gaussian + constant

however: fitted parameter may depend on ¹in
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Parametric Materials: plastic, metal

The all-time favourite: plastic

function type: Gaussian + constant

however: fitted parameter may depend on ¹in

more: BSDF PG2 data: http://bme.pab.eu , ... well, actually since July 2011

summary from measurements:
Good fit for mildly ”diffuse” samples, worse for anything ”shiny”
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incident angle (30,0)

model ward_metal_ps

mid 3474

B
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outgoing angle [deg]

model "ward_metal_ps" , sample "anofol606.37" 

RGB= 0.81 specularity=0.53 roughness=0.019

http://bme.pab.eu


Parametric Materials: plastic, metal

The all-time favourite: plastic

function type: Gaussian + constant

however: fitted parameter may depend on ¹in

more: BSDF PG2 data: http://bme.pab.eu , ... well, actually since July 2011

summary from measurements:
Good fit for mildly ”diffuse” samples, worse for anything ”shiny”
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not a new fact. from 1st RADIANCE Workshop in 2002:

however: fitted parameters out of range

http://bme.pab.eu


Parametric Materials: trans

Translucent materials, the first iteration : trans

function type: Gaussian + constant
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source: pab Ltd , www.pab.eu

incident angle (30,0)

model ward_trans

mid 3467
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outgoing angle [deg]

model "ward_trans" , sample "vk_rsm220" 



Parametric Materials: trans

Translucent materials, the first iteration : trans

function type: Gaussian + constant

parameter examples
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Parametric Materials: trans

Translucent materials, the first iteration : trans

function type: Gaussian + constant

parameter examples

conclusion: easy parameters selection, yet rarely fits real translucent materials

Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 12 / 21



User Functions for Materials: plasfunc, transfunc

Nearly a catch-all for a user designing a ”good” function

simple transfunc example: twin-wall clear plastic
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Sydney Stadium Australia 1997, Olympics 2000, UTS/pab , transfunc



User Functions for Materials: plasfunc, transfunc

Nearly a catch-all for a user designing a ”good” function

simple transfunc example: twin-wall clear plastic
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user function defined in ASCII textfile file, excerpt from Sydney2000 cellbrtf.cal file:



User Functions for Materials: plasfunc, transfunc

Nearly a catch-all for a user designing a ”good” function
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simple transfunc example: twin-wall clear plastic

very flexible and powerful
e.g. by defining and using other coordinate systems

current (2025) drawbacks:

not supported by all rendering paths
but further processing possible (e.g. ⇝ bsdf2tree XML)

function files tend to be ”write once”,
some syntax (e.g. if(a,b,c)) makes them hard to read
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user function defined in ASCII textfile file, excerpt from Sydney2000 cellbrtf.cal file:



Data-Driven: BSDF

Nearly a catch-all with measured BSDF data: XML based BSDF

very useful if measured BSDF data is available
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RADIANCE BSDF material data flow:

pabopto2bsdf
merges per-incident-files
⇝ per-hemisphere files

bsdf2ttree
interpolates (θin, φin)j

rpict/rvu/rtrace
uses BRDF material

XML file

pre-run

rendering

BSDF measurements

from PG2 SQL database to files
mountain

(θout , φout)i , i ≈ [1...100000]

e.g. by pab PG2, pgc

∀ (θin, φin)j , j ≈ [0..170] :
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Data-Driven: BSDF

Nearly a catch-all with measured BSDF data: XML based BSDF

very useful if measured BSDF data is available

no custom functions, no creative thinking-per-sample-type required

solves interpolation between incident angles

alternative input: function files

current (2025) drawbacks:

artefacts limit use in glare studies with sun-path animation

only limited handling of small-angle-scattering (”peak” extraction)
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Case Study 1, rolled stainless steel roof sheet

photo
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HDR photo taken through D12 welding glass in summer sunshine
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Case Study 1, parameter variation bsdf2ttree

bsdf2ttree -g N
N = [5, 6, 7]: only 7 yielded lowest artefacts for x⃗in

variation with x⃗out smooth for N = 5, but ”jumpy” for x⃗in
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Case Study 1, parameter variation bsdf2ttree

bsdf2ttree -g N
N = [5, 6, 7]: only 7 yielded lowest artefacts for x⃗in

variation with x⃗out smooth for N = 5, but ”jumpy” for x⃗in

bsdf2ttree -t pctcull
practically zero difference in results for pctcull=[0.9, 0.25]
but larger file-size and longer rendering times with 0.25
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Case Study 2, laminated sheet glass, translucent

photo: looks inconspicuous at first, but has an unscattered transmission peak
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Case Study 2, laminated sheet glass, translucent

photo: looks inconspicuous at first, but has an unscattered transmission peak

measured BSDF data

aBSDF XML g=6

aBSDF XML g=8

small-angle scattering
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Case Study 2, laminated sheet glass, translucent

photo: looks inconspicuous at first, but has an unscattered transmission peak

measured BSDF data

aBSDF XML g=6

aBSDF XML g=8

small-angle scattering

suggestion:
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aBSDF suggestions:

• identify peak by instrument signature, PG2 ”beam measurement”,
which is available anyway with any PG2 measurement.

• add peak-extraction for reflective side

• asymmetric resolution x⃗in , x⃗out ?



Summary

Short Summary of RADIANCE material modelling:

1 Scene language & code structure have been stable for a very long time.
good side: Backward compatible, which is useful when building geometry libraries.
bad side: scleronomous.
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Short Summary of RADIANCE material modelling:

1 Scene language & code structure have been stable for a very long time.
good side: Backward compatible, which is useful when building geometry libraries.
bad side: scleronomous.

2 only 2 built-in BSDF models; plastic (Ward Gaussian), ashik2,
compared to numerous in general Computer-Graphics,
no modular plug-in concept

3 has always featured powerful, flexible user function files, way ahead of its time.
Similar to the newer concept of a ”shader language”

4 XML/Tensortree modelling of measured BSDF works, with some things left to do
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Suggestions

What I’d recommend for future developments:

1 The established tool-chain of RADIANCE must be kept:
Modular, commandline-line oriented, tools for specific tasks.
Features like rtrace have been extremely useful in practice.

2 Better standard materials that fit larger number of BSDF data, with 3-5 parameters.
especially for ”translucent” types, e.g. variants of fritted glass

3 Study on how surface models influence the final result:
irradiance levels, glare prediction, annual irradiance levels

4 a more cooperative RADIANCE development ?

5 split release date (e.g. January) and workshop date (August),
giving others a chance to submit work based on the current version.
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slide from my talk at RADIANCE workshop 2006:



... thanks

A very big Thank You ! to Greg for his year-round support and bug-fixes.
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Happy rendering !
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