Materials in Radiance

trying an overview of the state in 2025

Peter Apian-Bennewitz

pab Consulting for Optics & Engineering info@pab.eu

28th Radiance workshop, Lausanne

Peter Apian-Bennewitz (pab) Materials in Radiance

In general: tools and software: different users, different priorities:

Academics: career, papers, curiosity

In general: tools and software: different users, different priorities:

- Academics: career, papers, curiosity
- Institutes: continuous struggle to fund the group's employees and fight for floor space

In general: tools and software: different users, different priorities:

- Academics: career, papers, curiosity
- Institutes: continuous struggle to fund the group's employees and fight for floor space
- Consultants: competitive selling point,

Peter Apian-Bennewitz (pab)

foreseeable project costs, reliability of results & liability to client

In general: tools and software: different users, different priorities:

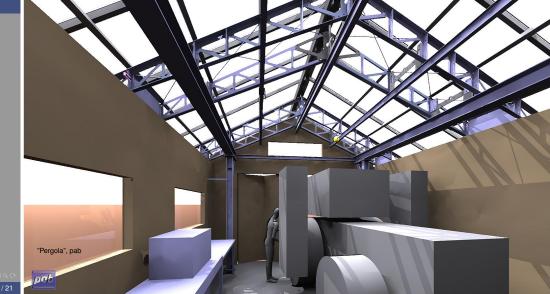
- Academics:
 - career, papers, curiosity
- Institutes:
 - continuous struggle to fund the group's employees and fight for floor space
- Consultants:
 - competitive selling point,
 foreseeable project costs,
 reliability of results & liability to client

Inter-Understanding is a little low, fruitful collaboration often difficult.

Contents

- 1 Introduction & Motivation
- 2 Scattering at a Surface: The BSDF, Maths & Measurement
- 3 RADIANCE specific: Material Types
- 4 Parametric Materials
- 5 User Functions and Materials
- 6 "Data-Driven" Materials
- 7 2 Case Studies, Glare Problems
- 8 Summary & Outlook

Motivation for Material Models From the very simple to the complex: simply differentiate the surfaces in a model simulation, Rodic demo space, pab Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 4 / 21


From the very simple to the complex:

simply differentiate the surfaces in a model

From the very simple to the complex:

simply differentiate the surfaces in a model

- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material

- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material

- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material

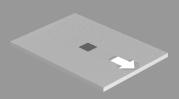
- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material

- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material
- glare analysis

- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material
- glare analysis

- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material
- glare analysis
- indoor light levels: shading analysis with [opaque|glass] surfaces

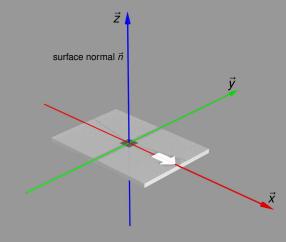
- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material
- glare analysis
- □ indoor light levels: shading analysis with [opaque|glass] surfaces


- simply differentiate the surfaces in a model
- reproduce the "looks" of a real material
- glare analysis
- indoor light levels: shading analysis with [opaque|glass] surfaces
- model light transport: light shelves, light pipes → related topics: ambient calculation, Photon Map extension

Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010

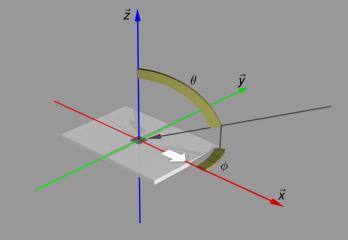
at a surface element on a material:


<ロ > ← 目 > ← 目 > ← 目 → りへ(~)

August 2025 5 / 21

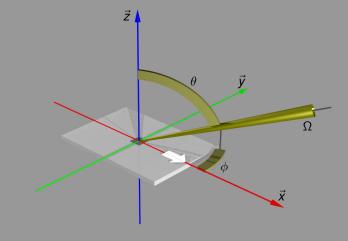
Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010


- at a surface element on a material:
- attach coordinate system

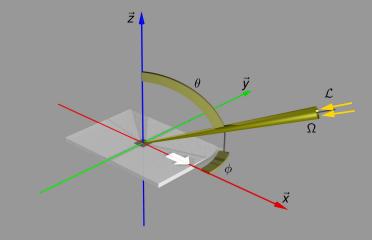
Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010


- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)

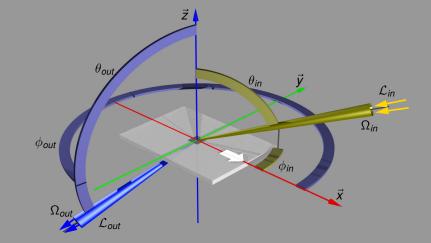
Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010


- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- \square let Ω denote a solid angle

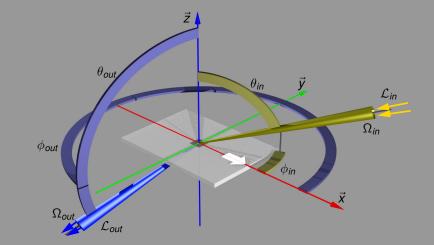
Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010


- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- \square let Ω denote a solid angle
- □ let $\mathcal{L}(\vec{x})$ denote *Radiance*, $\left[\frac{Watt}{sr\ m^2}\right]$

Bidirectional Scatter Distribution Function

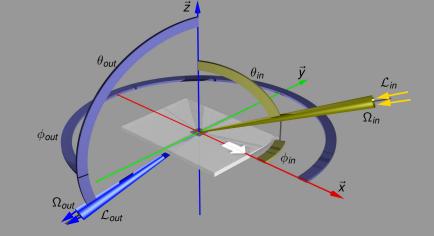
more maths: pab talk at RADIANCE Workshop 2010


- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- let Ω denote a solid angle
- let $\mathcal{L}(\vec{x})$ denote *Radiance*, $\left[\frac{Watt}{sr\ m^2}\right]$
- \mathcal{L}_{in} incident to a surface element, \mathcal{L}_{out} outgoing from a surface element

Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010

- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- let Ω denote a solid angle
- let $\mathcal{L}(\vec{x})$ denote *Radiance*, $\left[\frac{Watt}{sr\ m^2}\right]$
- \square $\mathcal{L}_{\textit{in}}$ incident to a surface element, $\mathcal{L}_{\textit{out}}$ outgoing from a surface element
- □ let $\int_{\vec{x}}^{\Omega_{in}=2\pi} ... f(\vec{x})... d\Omega$ describe an integral of a function f over the hemisphere



Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010

- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- \square let Ω denote a solid angle
- let $\mathcal{L}(\vec{x})$ denote *Radiance*, $\left[\frac{Watt}{sr,m^2}\right]$
- \square \mathcal{L}_{in} incident to a surface element, \mathcal{L}_{out} outgoing from a surface element
- □ let $\int_{\vec{x}_{-}}^{\Omega_{in}=2\pi}$... $f(\vec{x})$... $d\Omega$ describe an integral of a function f over the hemisphere

then

Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010

- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- \square let Ω denote a solid angle
- let $\mathcal{L}(\vec{x})$ denote *Radiance*, $\left[\frac{Watt}{sr,m^2}\right]$
- \square \mathcal{L}_{in} incident to a surface element, \mathcal{L}_{out} outgoing from a surface element
- let $\int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} \dots f(\vec{x}) \dots d\Omega$ describe an integral of a function f over the hemisphere

then

BSDF def:

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int_{-\infty}^{\Omega_{in} = 2\pi} BSDF(\vec{x}_{in}, \vec{x}_{out}) \cos(\theta_{out}) \mathcal{L}_{in}(\vec{x}_{in}) d\Omega_{in}$$

 θ_{out}

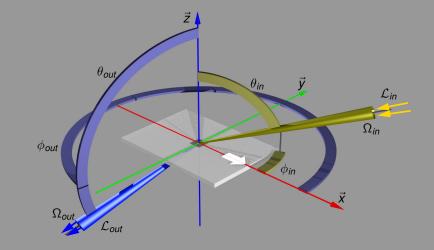
Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010

- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- let Ω denote a solid angle
- let $\mathcal{L}(\vec{x})$ denote *Radiance*, $\left[\frac{Watt}{sr,m^2}\right]$
- \mathcal{L}_{in} incident to a surface element, \mathcal{L}_{out} outgoing from a surface element
- □ let $\int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} ... f(\vec{x})... d\Omega$ describe an integral of a function f over the hemisphere

then

BSDF def:


Peter Apian-Bennewitz (pab)

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int\limits_{\vec{x}_{in}}^{\Omega_{in}=2\pi} BSDF(\vec{x}_{in}, \vec{x}_{out}) \cos(\theta_{out}) \mathcal{L}_{in}(\vec{x}_{in}) d\Omega_{in}$$

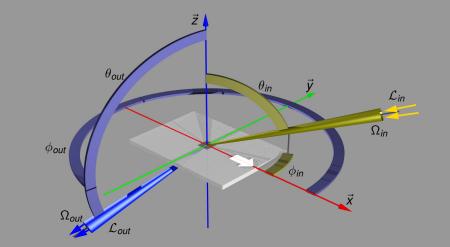
depends on 4 scalar variables: $BSDF(\vec{x}_{in}, \vec{x}_{out}) = BSDF(\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out})$

Materials in Radiance

4 □ > 4 ₱ > 4 € > 4 € > 9 € August 2025 5/21

Bidirectional Scatter Distribution Function

more maths: pab talk at RADIANCE Workshop 2010


- at a surface element on a material:
- attach coordinate system
- let \vec{x} denote a 3D direction, e.g. with spherical coordinates (θ, ϕ)
- let Ω denote a solid angle
- let $\mathcal{L}(\vec{x})$ denote *Radiance*, $\left[\frac{Watt}{sr,m^2}\right]$
- \square \mathcal{L}_{in} incident to a surface element, \mathcal{L}_{out} outgoing from a surface element
- □ let $\int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} ... f(\vec{x})... d\Omega$ describe an integral of a function f over the hemisphere

then

BSDF def:

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} BSDF(\vec{x}_{in}, \vec{x}_{out}) \cos(\theta_{out}) \mathcal{L}_{in}(\vec{x}_{in}) d\Omega_{in}$$

- depends on 4 scalar variables: $BSDF(\vec{x}_{in}, \vec{x}_{out}) = BSDF(\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out})$
- \square BSDF \in [0 : ∞] , yet integral enforced by ρ_{dh} < 1 , "diffuse" material: BSDF = const

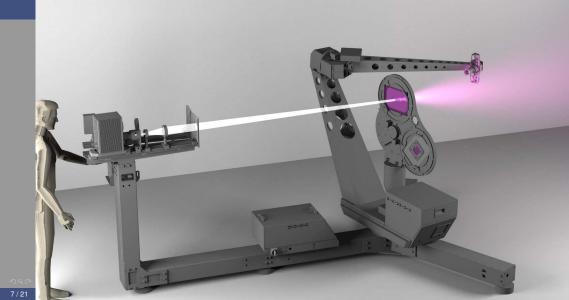
built-in functions with parameters

classical BSDF model:

classical BSDF model: built-in functions with parameters

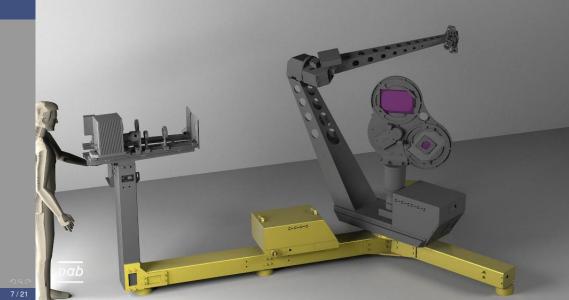
Peter Apian-Bennewitz (pab)

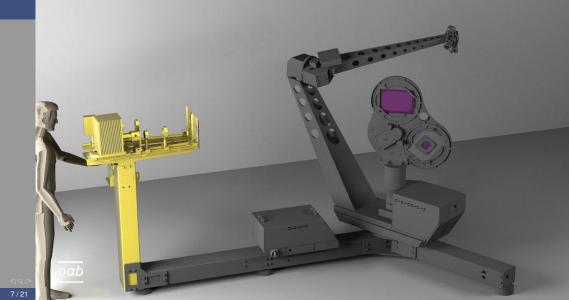
user defined "function files", evaluated at runtime at each ray-material intersection, similar to newer concept of a "shader language"

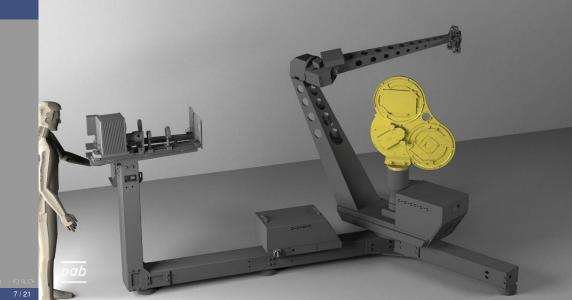

- classical BSDF model: built-in functions with parameters
- user defined "function files", evaluated at runtime at each ray-material intersection, similar to newer concept of a "shader language"
- newer concepts: "data driven" actually: "automatic" models with a set set of built-in functions or no functions at all

- classical BSDF model: built-in functions with parameters
- user defined "function files", evaluated at runtime at each ray-material intersection, similar to newer concept of a "shader language"
- newer concepts: "data driven" actually: "automatic" models with a set set of built-in functions or no functions at all
- BSDF can (and should) be measured "in-vitro" in a lab

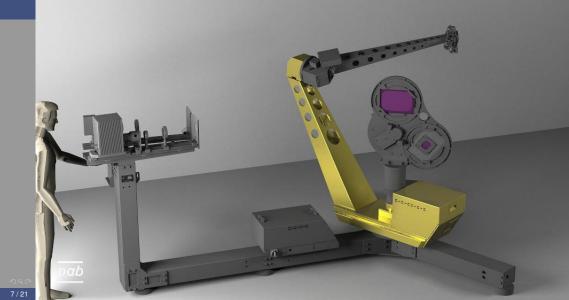
- classical BSDF model: built-in functions with parameters
- user defined "function files", evaluated at runtime at each ray-material intersection, similar to newer concept of a "shader language"
- newer concepts: "data driven" actually: "automatic" models with a set set of built-in functions or no functions at all
- BSDF can (and should) be measured "in-vitro" in a lab
- BSDF can be visualised, analysed, compared and understood on its own

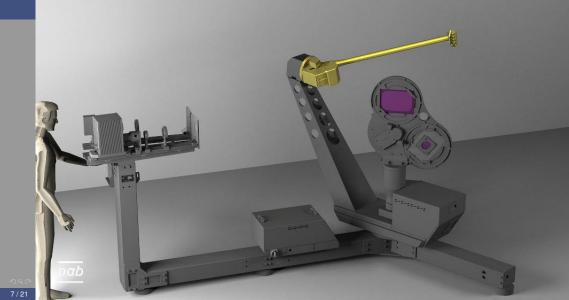

Tool-time: Measuring the BSDF

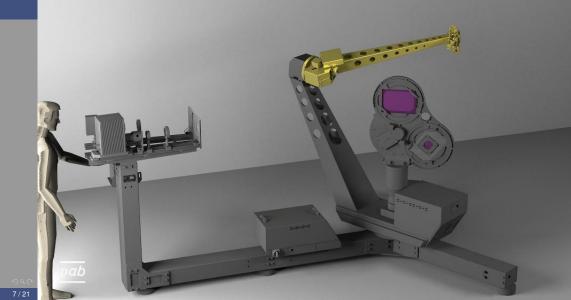

scanning gonio-photometers, e.g. pab PG2

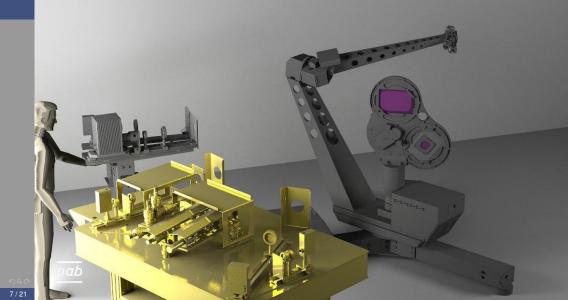


Tool-time: Measuring the BSDF

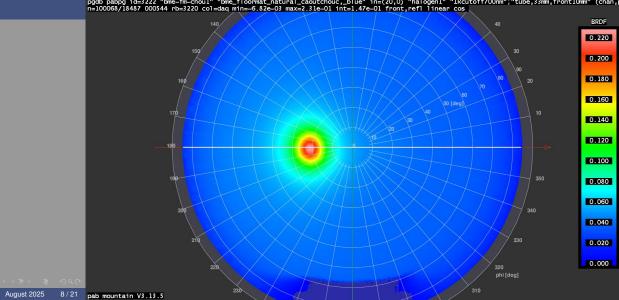

scanning gonio-photometers, e.g. pab PG2





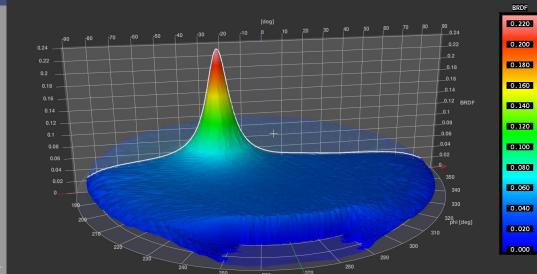


- scanning gonio-photometers, e.g. pab PG2
- image based gonio-photometers


Materials in Radiance Peter Apian-Bennewitz (pab) August 2025 7 / 21

plotting hemispherical BSDF for one incident (θ_{in}, ϕ_{in}) with **mountain**

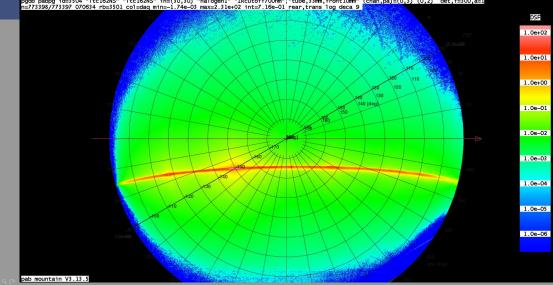
Materials in Radiance


natural rubber floor-tile, orthogonal view

Peter Apian-Bennewitz (pab)

plotting hemispherical BSDF for one incident (θ_{in}, ϕ_{in}) with **mountain**

natural rubber floor-tile, oblique view



pgdb pappg 145/222 "bme-Tm-chou!" "bme_floormat_natural_caoutchouc_blue" in=(20,0) "halogen!" "LKcutoff/00nm";"tube,33mm,frontlUmm" (chan, n=100068/18487 029813 rb=3220 col=daq min=6.82e-03 max=2.31e-01 int=1.47e-01 front,refl linear cos

August 2025

plotting hemispherical BSDF for one incident (θ_{in}, ϕ_{in}) with **mountain**

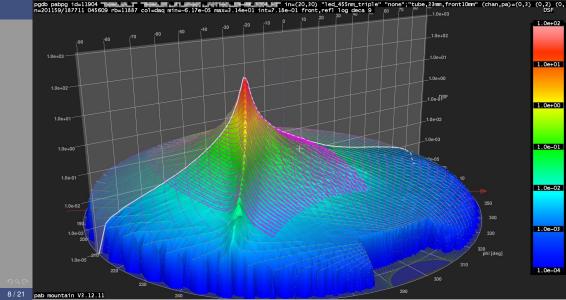
- natural rubber floor-tile,
- clear twin-wall plastic

Peter Apian-Bennewitz (pab)

Materials in Radiance

August 2025 8 / 21

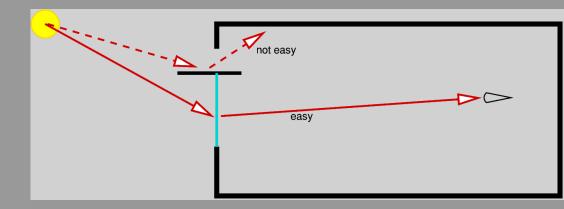
21


plotting hemispherical BSDF for one incident (θ_{in}, ϕ_{in}) with **mountain**

Materials in Radiance

August 2025

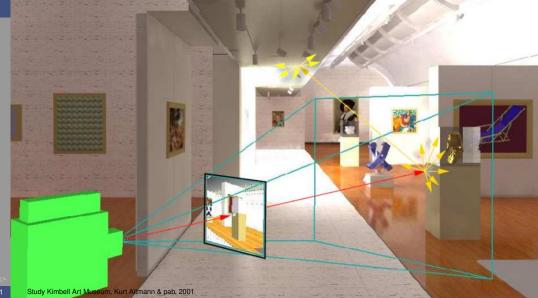
- natural rubber floor-tile.
- clear twin-wall plastic
- aluminium roof material


Peter Apian-Bennewitz (pab)

RADIANCE Rendering and Materials

Results of your material modelling may be affected by how RADIANCE works:

objects are either emitting-sources or passive surfaces.
 Advantage during rendering: list of known sources to check for.



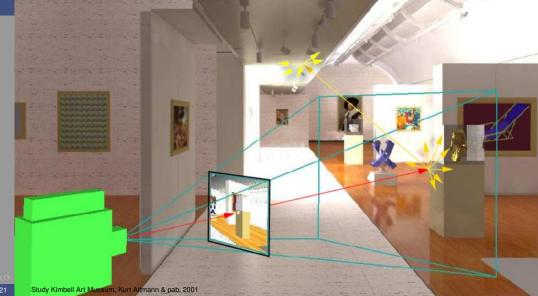
Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 9 / 21

RADIANCE Rendering and Materials

Results of your material modelling may be affected by how RADIANCE works:

- objects are either emitting-sources or passive surfaces.
 Advantage during rendering: list of known sources to check for.
- is basically a backward-raytracer: from eye to sources
 disadvantage: hard to find ray-paths with near-specular surfaces in-between

Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 9 / 21 Study Kimbell Art Museum, Kurt Altmann & pab, 2001


RADIANCE Rendering and Materials

Results of your material modelling may be affected by how RADIANCE works:

- objects are either emitting-sources or passive surfaces.

 Advantage during rendering: list of known sources to check for.
- is basically a backward-raytracer: from eye to sources disadvantage: hard to find ray-paths with near-specular surfaces in-between

→ remember to set **rpict** parameters well, and/or use **pmap** (PhotonMap) extension

Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 9 / 21 Study Kimbell Art Museum, Kurt Altmann & pab, 2001

□ light sources

- spotlight
- glow

- light sources
- passive materials with parameters

 classical, Ward, Gaussian lobe + constant: plastic, metal, trans
 asymmetric versions:

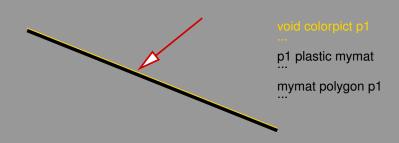
• classical transparent non-scattering: glass, dielectric, interface

plastic2, metal2, trans2

newer: ashik2

- light sources
- passive materials with parameters
- passive materials with function file or data

legacy:
 plasfunc, metfunc, transfunc, brtdfunc: function file
 plasdata, metdata, transdata: data, but linear interpolation only

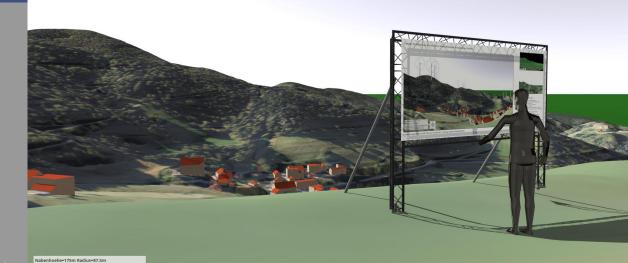

• newer:

BSDF, XML based, "tensor-tree", lobe-based interpolation

aBSDF with extra, limited, peak-handling

- light sources
- passive materials with parameters
- passive materials with function file or data
- □ "patterns": modifications of a material parameter (e.g. colour) e.g.: to map a picture onto a mesh or a polygon

- materials with user supplied functions
 - brightfunc, colorfunc, transfunc, mixfunc
- material models using data-files with linear interpolation
 - colordata, brightdata, colorpict
 - colortext, brighttext
 - plasdata, metdata, transdata


Peter Apian-Bennewitz (pab)

Materials in Radiance

August 2025

10 / 21

- light sources
- passive materials with parameters
- passive materials with function file or data
- patterns": modifications of a material parameter (e.g. colour) e.g.: to map a picture onto a mesh or a polygon

- light sources
- passive materials with parameters
- passive materials with function file or data
- □ "patterns": modifications of a material parameter (e.g. colour) e.g.: to map a picture onto a mesh or a polygon

Lörrach/Weil am Rhein • Dienstag, 1. Juli 2025 https://www.badische-zeitung.de/exkursion-in-malsburg-marzell-will-die-auswirkungen-von-windkraft-auf-umwelt-zeigen

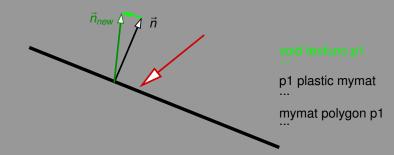

Bei der Quellen-Exkursion mit Alt- Wassermeister Wehrle

FOTO: KARLHEINZ BEYERLE

Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 10 / 21

- light sources
- passive materials with parameters
- passive materials with function file or data
- "patterns": modifications of a material parameter (e.g. colour) e.g.: to map a picture onto a mesh or a polygon
- "textures": modifications of the surface normal

texfunc, texdata

- light sources
- passive materials with parameters
- passive materials with function file or data
- patterns": modifications of a material parameter (e.g. colour) e.g.: to map a picture onto a mesh or a polygon
- "textures": modifications of the surface normal

- light sources
- passive materials with parameters
- passive materials with function file or data
- patterns": modifications of a material parameter (e.g. colour) e.g.: to map a picture onto a mesh or a polygon
- "textures": modifications of the surface normal
- materials with special "side effects" during rendering

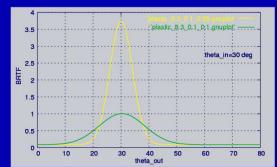
antimatter: subtract a volume (entry-level CSG)

illum : envelop a complex geometry (e.g. light-redirecting glazing)

mirror : secondary light sources (mirror images of sources)

mist : participating media, volume scattering

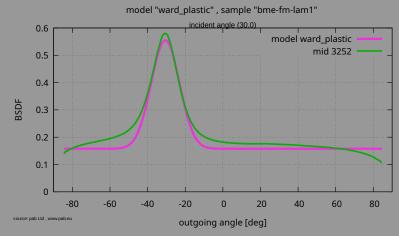
prism : legacy special for prismatic glazing


The all-time favourite: plastic

☐ function type: Gaussian + constant

slide from my talk at RADIANCE Workshop 2004:

the brtf user side: plastic example

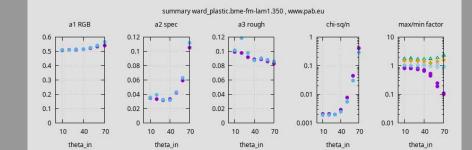


Peter Apian-Bennewitz (pab) Materials in Radiance August 2025

The all-time favourite: plastic

function type: Gaussian + constant

data source, 2011 : http://bme.pab.eu:


RGB= 0.51 specularity=0.031 roughness=0.092

The all-time favourite: plastic

- function type: Gaussian + constant
- \blacksquare however: fitted parameter may depend on θ_{in}

ward_plastic fit of bme-fm-lam1

Peter Apian-Bennewitz (pab)

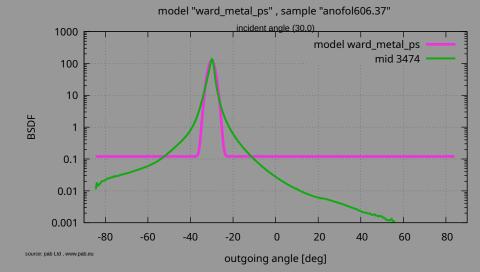
The all-time favourite: plastic


Peter Apian-Bennewitz (pab)

☐ function type: Gaussian + constant

however: fitted parameter may depend on θ_{in}

more: BSDF PG2 data: http://bme.pab.eu, ... well, actually since July 2011



August 2025

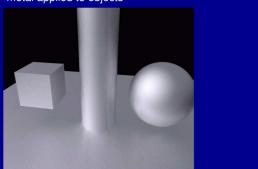
Materials in Radiance

The all-time favourite: plastic

- function type: Gaussian + constant
- \blacksquare however: fitted parameter may depend on θ_{in}
- more: BSDF PG2 data: http://bme.pab.eu, ... well, actually since July 2011
- summary from measurements:Good fit for mildly "diffuse" samples, worse for anything "shiny"

RGB= 0.81 specularity=0.53 roughness=0.019

The all-time favourite: plastic

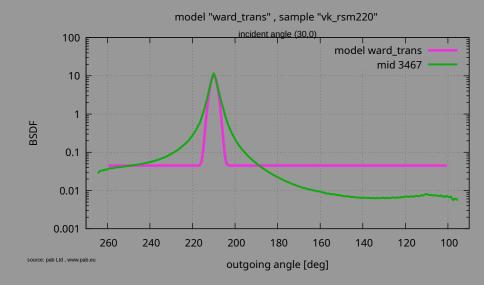

- function type: Gaussian + constant
- \Box however: fitted parameter may depend on θ_{in}
- more: BSDF PG2 data: http://bme.pab.eu, ... well, actually since July 2011
- summary from measurements:

 Good fit for mildly "diffuse" samples, worse for anything "shiny"

not a new fact. from 1st RADIANCE Workshop in 2002:

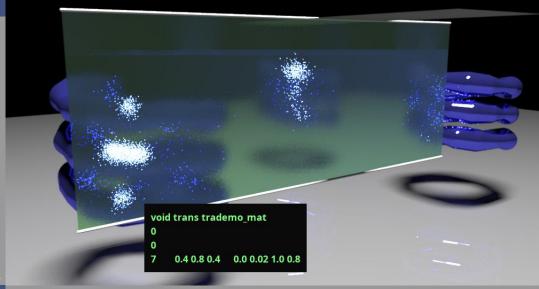
Example: Sandblasted Aluminium Surface

metal applied to objects

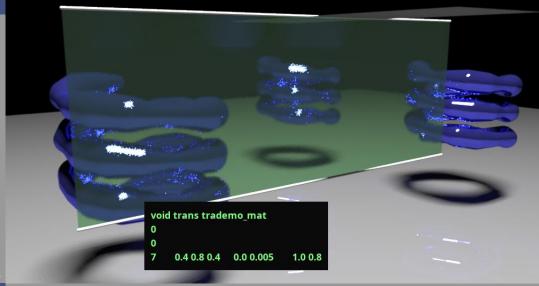


however: fitted parameters out of range

Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 11 / 21


Translucent materials, the first iteration: trans

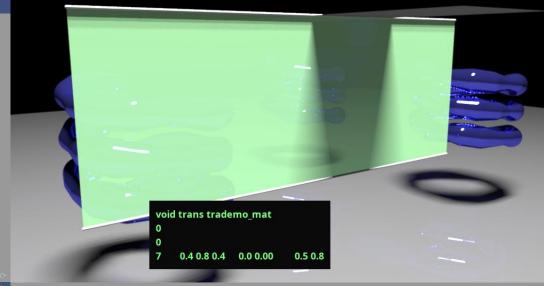
function type: Gaussian + constant



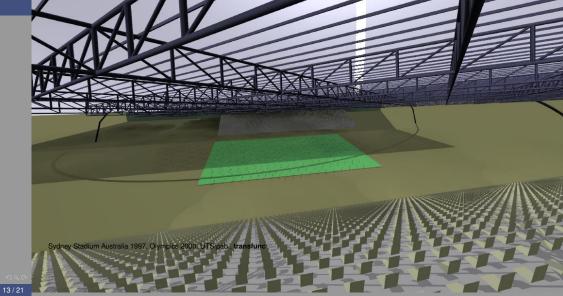
Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 12 / 21

- function type: Gaussian + constant
- parameter examples

- function type: Gaussian + constant
- parameter examples


- function type: Gaussian + constant
- parameter examples

- function type: Gaussian + constant
- parameter examples



- function type: Gaussian + constant
- parameter examples
- □ conclusion: easy parameters selection, yet rarely fits real translucent materials

Nearly a catch-all for a user designing a "good" function

simple **transfunc** example: twin-wall clear plastic

Nearly a catch-all for a user designing a "good" function

simple **transfunc** example: twin-wall clear plastic

```
user function defined in ASCII textfile file, excerpt from Sydney2000 cellbrtf.cal file:
{ angle between extrusion vector and 'a' direction in [deg] }
alpha(ax,ay,az) = dAcos( sklp( ax,ay,az, Ex,Ey,Ez ) );
```

{ forward peak scattering }

forward(lx,ly,lz)= if(dAcos(sklp(lx,ly,lz,Dx,Dy,Dz)) - 2*conewidth, minvalue, maxvalue);

{ combine both }

temp(lx,ly,lz,ff)= if(abs(alpha(lx,ly,lz)-alpha(Dx,Dy,Dz)) - conewidth , 0.9*ff , maxvalue);

{ speed up by calling 'forward' once only }
cellbrtf(lx,ly,lz,Omega)= temp(lx,ly,lz, forward(lx,ly,lz));

Nearly a catch-all for a user designing a "good" function

- simple **transfunc** example: twin-wall clear plastic
- very flexible and powerful
 e.g. by defining and using other coordinate systems

```
user function defined in ASCII textfile file, excerpt from Sydney2000 cellbrtf.cal file:

{ angle between extrusion vector and 'a' direction in [deg] }
```

```
alpha(ax,ay,az) = dAcos( sklp( ax,ay,az, Ex,Ey,Ez ) );
{ forward peak scattering }
forward(lx,ly,lz)= if( dAcos( sklp(lx,ly,lz,Dx,Dy,Dz) ) - 2*conewidth, minvalue, maxvalue );
{ combine both }
temp(lx,ly,lz,ff)= if( abs(alpha(lx,ly,lz)-alpha(Dx,Dy,Dz)) - conewidth , 0.9*ff , maxvalue );
{ speed up by calling 'forward' once only }
cellbrtf(lx,ly,lz,Omega)= temp(lx,ly,lz, forward(lx,ly,lz) );
```

Nearly a catch-all for a user designing a "good" function

- simple **transfunc** example: twin-wall clear plastic
- very flexible and powerful
 e.g. by defining and using other coordinate systems

current (2025) drawbacks:

not supported by all rendering paths
but further processing possible (e.g. \rightsquigarrow bsdf2tree XML)

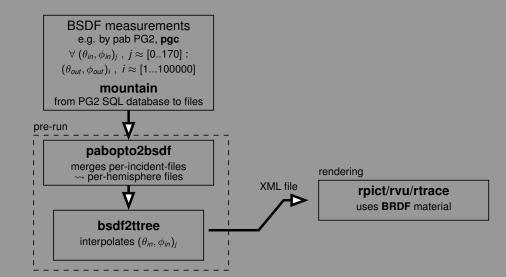
user function defined in ASCII textfile file, excerpt from Sydney2000 cellbrtf.cal file:

```
{ angle between extrusion vector and 'a' direction in [deg] }
alpha(ax,ay,az) = dAcos( sklp( ax,ay,az, Ex,Ey,Ez ) );
{ forward peak scattering }
forward(lx,ly,lz)= if( dAcos( sklp(lx,ly,lz,Dx,Dy,Dz) ) - 2*conewidth, minvalue, maxvalue );
{ combine both }
temp(lx,ly,lz,ff)= if( abs(alpha(lx,ly,lz)-alpha(Dx,Dy,Dz)) - conewidth , 0.9*ff , maxvalue );
{ speed up by calling 'forward' once only }
cellbrtf(lx,ly,lz,Omega)= temp(lx,ly,lz, forward(lx,ly,lz) );
```

Nearly a catch-all for a user designing a "good" function

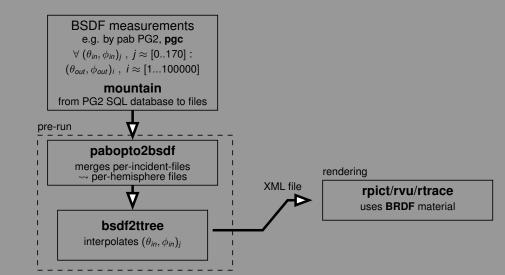
- simple **transfunc** example: twin-wall clear plastic
- very flexible and powerful
 e.g. by defining and using other coordinate systems

current (2025) drawbacks:

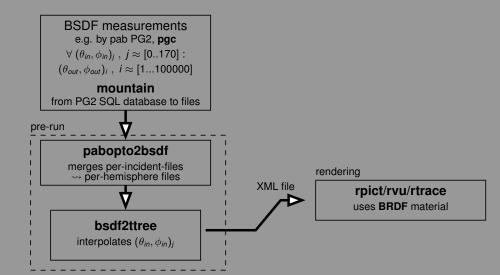

- not supported by all rendering paths
 but further processing possible (e.g. \rightsquigarrow **bsdf2tree** XML)
- function files tend to be "write once", some syntax (e.g. if (a,b,c)) makes them hard to read

user function defined in ASCII textfile file, excerpt from Sydney2000 cellbrtf.cal file:

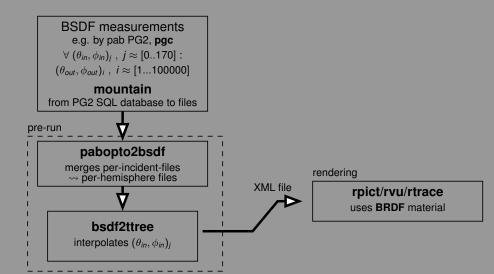
```
{ angle between extrusion vector and 'a' direction in [deg] }
alpha(ax,ay,az) = dAcos( sklp( ax,ay,az, Ex,Ey,Ez ) );
{ forward peak scattering }
forward(lx,ly,lz)= if( dAcos( sklp(lx,ly,lz,Dx,Dy,Dz) ) - 2*conewidth, minvalue, maxvalue );
{ combine both }
temp(lx,ly,lz,ff)= if( abs(alpha(lx,ly,lz)-alpha(Dx,Dy,Dz)) - conewidth , 0.9*ff , maxvalue );
{ speed up by calling 'forward' once only }
cellbrtf(lx,ly,lz,Omega)= temp(lx,ly,lz, forward(lx,ly,lz) );
```


Nearly a catch-all with measured BSDF data: XML based BSDF

very useful if measured BSDF data is available


Nearly a catch-all with measured BSDF data: XML based BSDF

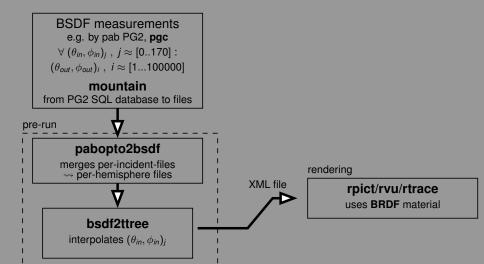
- very useful if measured BSDF data is available
- no custom functions, no creative thinking-per-sample-type required


Nearly a catch-all with measured BSDF data: XML based BSDF

- very useful if measured BSDF data is available
- no custom functions, no creative thinking-per-sample-type required
- solves interpolation between incident angles

Nearly a catch-all with measured BSDF data: XML based BSDF

- very useful if measured BSDF data is available
- no custom functions, no creative thinking-per-sample-type required
- solves interpolation between incident angles
- alternative input: function files



Nearly a catch-all with measured BSDF data: XML based BSDF

- very useful if measured BSDF data is available
- no custom functions, no creative thinking-per-sample-type required
- solves interpolation between incident angles
- □ alternative input: function files

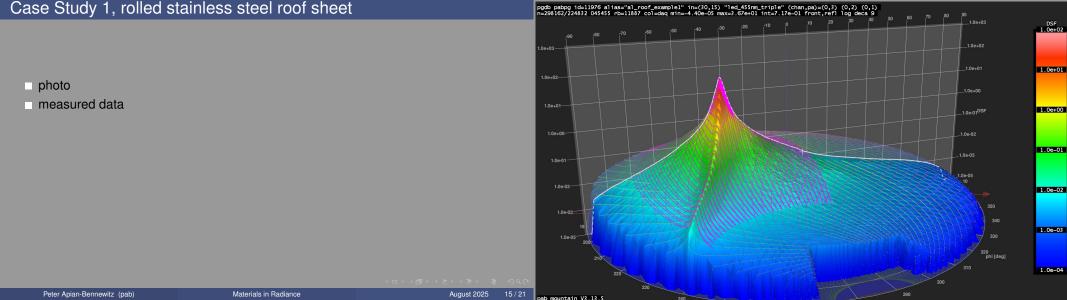
current (2025) drawbacks:

artefacts limit use in glare studies with sun-path animation

Nearly a catch-all with measured BSDF data: XML based BSDF

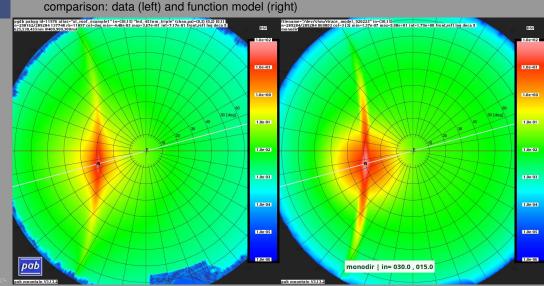

- very useful if measured BSDF data is available
- no custom functions, no creative thinking-per-sample-type required
- solves interpolation between incident angles
- alternative input: function files

current (2025) drawbacks:


- artefacts limit use in glare studies with sun-path animation
- only limited handling of small-angle-scattering ("peak" extraction)

RADIANCE **BSDF** material data flow: BSDF measurements e.g. by pab PG2, pgc $\forall (\theta_{in}, \phi_{in})_i, j \approx [0..170]$: $(\theta_{out}, \phi_{out})_i$, $i \approx [1...100000]$ mountain from PG2 SQL database to files pre-run pabopto2bsdf merges per-incident-files rendering → per-hemisphere files XML file rpict/rvu/rtrace uses **BRDF** material bsdf2ttree interpolates $(\theta_{in}, \phi_{in})_i$

HDR photo taken through D12 welding glass in summer sunshine


photo

- photo
- measured data

comparison measured / model, using "virtual rtrace gonio-photometer":

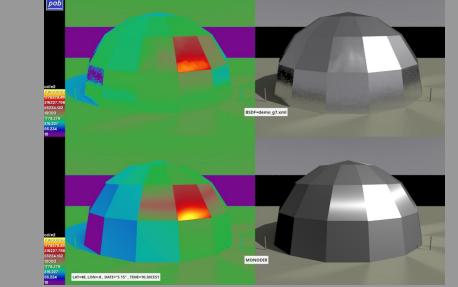
function file model "monodir"

- photo
- measured data

comparison measured / model, using "virtual rtrace gonio-photometer":

XML model

function file model "monodir"

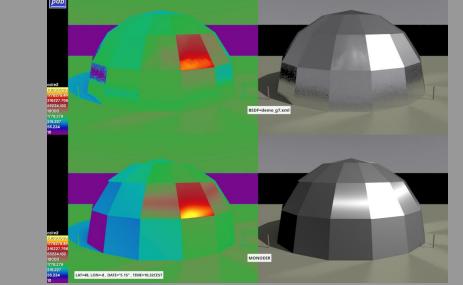

comparison: data (left) and XML model (right) pgdb pabpg id-11976 alias-"al.roof, example!" in-(30,15) "led. 455nm, triple" (chan,pa)-(0,3) (0,2) (0,1) n-298162/289284 137748 rb-11897 col-dag min-4.40e-05 max-3.67e+01 int-7.17e-01 front.ref1 log deca 9 252,5304,550m d400,000,000m/ filename="/dev/shm/rtrace_model_926342" in=(30,15) n=283284/289284 080803 col=3 [3] min=3.62e-08 max=3.20e+01 int=7.12e-01 front,refl log deca 9 RSDF-demo_07 xm 1.0e+01 1.0e+00 1.0e-02 1.0e-02 1.0e-03 1.0e-04 1.0e-05 1.0e-05 1.0e-06 1.0e-06 demo_g7.xml | in= 030.0 , 015.0

- photo
- measured data

comparison measured / model, using "virtual rtrace gonio-photometer":

- function file model "monodir"
- XML model

demo building

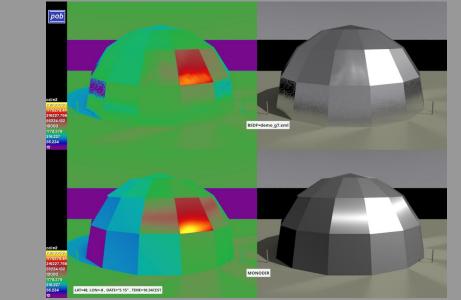


- photo
- measured data

comparison measured / model, using "virtual rtrace gonio-photometer":

- function file model "monodir"
- XML model

demo building

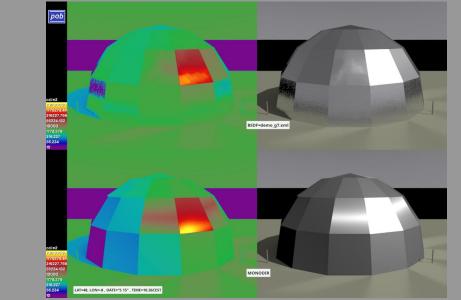


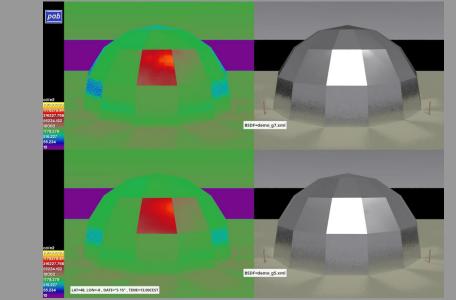
- photo
- measured data

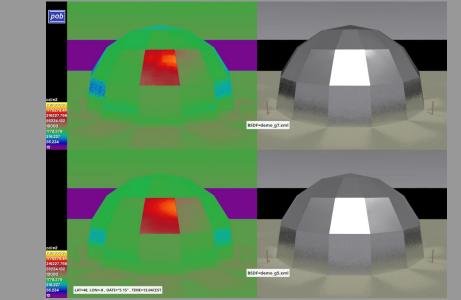
comparison measured / model, using "virtual rtrace gonio-photometer":

- function file model "monodir"
- XML model

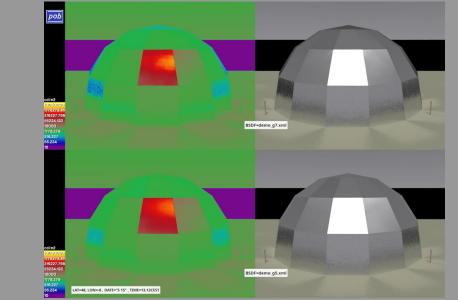
demo building

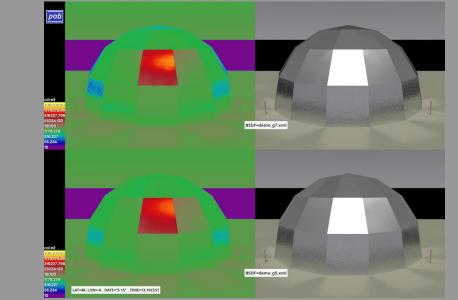


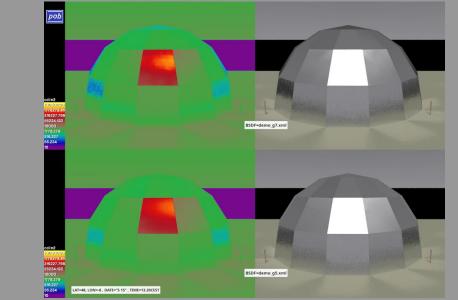

- photo
- measured data

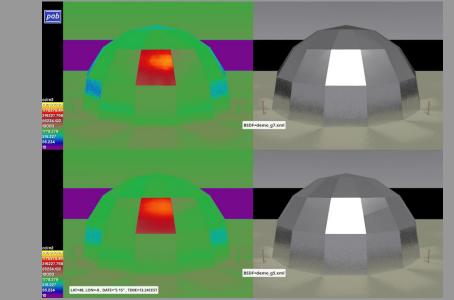

comparison measured / model, using "virtual rtrace gonio-photometer":

- function file model "monodir"
- XML model


demo building







- **bsdf2ttree** -g N N = [5, 6, 7]: only 7 yielded lowest artefacts for \vec{x}_{in} variation with \vec{x}_{out} smooth for N = 5, but "jumpy" for \vec{x}_{in}
- **bsdf2ttree** -t pctcull practically zero difference in results for pctcull=[0.9, 0.25] but larger file-size and longer rendering times with 0.25

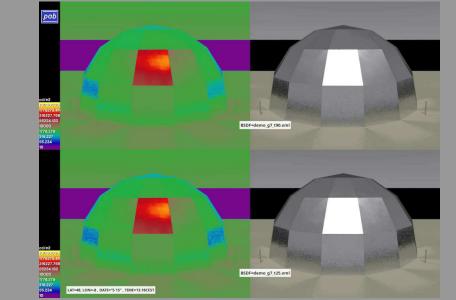
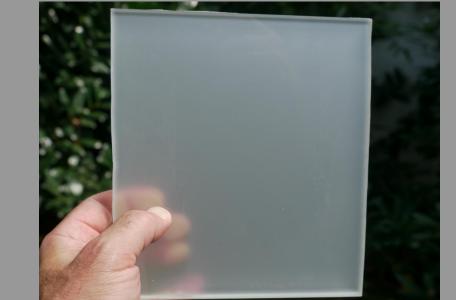
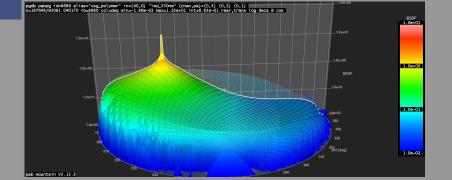
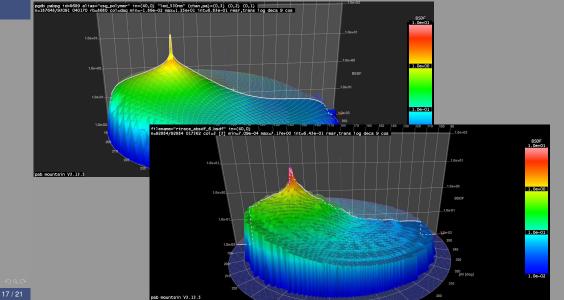
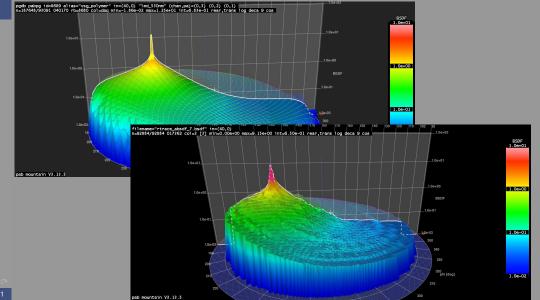




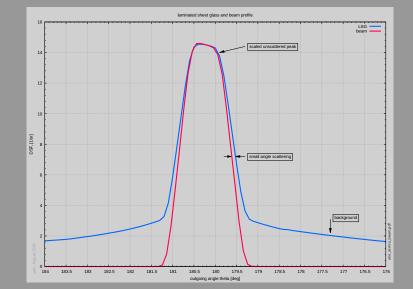
photo: looks inconspicuous at first, but has an unscattered transmission peak


August 2025

- photo: looks inconspicuous at first, but has an unscattered transmission peak
- measured BSDF data



コト 4 個 ト 4 喜 ト 4 喜 - り Q ()


- photo: looks inconspicuous at first, but has an unscattered transmission peak
- measured BSDF data
- **aBSDF** XML g=6

- photo: looks inconspicuous at first, but has an unscattered transmission peak
- measured BSDF data
- **aBSDF** XML g=6
- □ aBSDF XML g=8

- photo: looks inconspicuous at first, but has an unscattered transmission peak
- measured BSDF data
- **aBSDF** XML g=6
- **aBSDF** XML g=8
- small-angle scattering

Peter Apian-Bennewitz (pab) Materials in Radiance August 2025 17 / 21

- photo: looks inconspicuous at first, but has an unscattered transmission peak
- measured BSDF data
- **aBSDF** XML g=6
- **aBSDF** XML g=8
- small-angle scattering
- suggestion:

aBSDF suggestions:

- identify peak by instrument signature, PG2 "beam measurement", which is available anyway with any PG2 measurement.
- add peak-extraction for reflective side
- asymmetric resolution \vec{x}_{in} , \vec{x}_{out} ?

Short Summary of RADIANCE material modelling:

Scene language & code structure have been stable for a *very* long time. good side: Backward compatible, which is useful when building geometry libraries. bad side: scleronomous.

Short Summary of RADIANCE material modelling:

- 1 Scene language & code structure have been stable for a *very* long time. good side: Backward compatible, which is useful when building geometry libraries. bad side: scleronomous.
- only 2 built-in BSDF models; plastic (Ward Gaussian), ashik2, compared to numerous in general Computer-Graphics, no modular plug-in concept

Short Summary of RADIANCE material modelling:

- Scene language & code structure have been stable for a *very* long time. good side: Backward compatible, which is useful when building geometry libraries. bad side: scleronomous.
- 2 only 2 built-in BSDF models; **plastic** (Ward Gaussian), **ashik2**, compared to numerous in general Computer-Graphics, no modular plug-in concept
- a has always featured powerful, flexible user function files, way ahead of its time. Similar to the newer concept of a "shader language"

Short Summary of RADIANCE material modelling:

- 1 Scene language & code structure have been stable for a *very* long time. good side: Backward compatible, which is useful when building geometry libraries. bad side: scleronomous.
- only 2 built-in BSDF models; plastic (Ward Gaussian), ashik2, compared to numerous in general Computer-Graphics, no modular plug-in concept
- 3 has always featured powerful, flexible user function files, way ahead of its time. Similar to the newer concept of a "shader language"
- 4 XML/Tensortree modelling of measured BSDF works, with some things left to do

Suggestions

What I'd recommend for future developments:

- 1 The established tool-chain of RADIANCE must be kept: Modular, commandline-line oriented, tools for specific tasks. Features like **rtrace** have been extremely useful in practice.
- 2 Better standard materials that fit larger number of BSDF data, with 3-5 parameters. especially for "translucent" types, e.g. variants of fritted glass
- 3 Study on how surface models influence the final result: irradiance levels, glare prediction, annual irradiance levels
- 4 a more cooperative RADIANCE development?
- 5 split release date (e.g. January) and workshop date (August), giving others a chance to submit work based on the *current* version.

August 2025

Suggestions

What I'd recommend for future developments:

- 1 The established tool-chain of RADIANCE must be kept: Modular, commandline-line oriented, tools for specific tasks. Features like **rtrace** have been extremely useful in practice.
- 2 Better standard materials that fit larger number of BSDF data, with 3-5 parameters. especially for "translucent" types, e.g. variants of fritted glass
- 3 Study on how surface models influence the final result: irradiance levels, glare prediction, annual irradiance levels
- a more cooperative RADIANCE development?
- s split release date (e.g. January) and workshop date (August), giving others a chance to submit work based on the *current* version.

minor thoughts on Radiance

slide from my talk at RADIANCE workshop 2006:

number of developers ?

funding (!)

quality assurance & test-releases (technically no problem, but socially ?)
we may need software branches – will they mess up the release process ?
serious software contributors must be prepared to maintain their work (for years)
this is especially relevant to university projects (tutors, please take note)

read man 0 transport CM developmen

road map & transparent SW development
 funding scheme needed for implementation of new features deemed 'urgent'

La de Conservado

documentation
 community of primary writers/compilers estimated at 5–10 folks (per planet) hierachical structure needed to insert and retrieve information configurable responsibility for contents (for a branch of the doc tree) comments open to all (but clearly marked as such)

target: ease use, put Radiance on broader base

■ A very big *Thank You!* to Greg for his year-round support and bug-fixes. Peter Apian-Bennewitz (pab) Materials in Radiance August 2025

... thanks

... thanks

- A very big *Thank You!* to Greg for his year-round support and bug-fixes.
- Thanks to Jan for the opportunity for this little summary on materials.

... thanks

- A very big *Thank You!* to Greg for his year-round support and bug-fixes.
- Thanks to Jan for the opportunity for this little summary on materials.
- Thank you for your interest and attention!

Peter Apian-Bennewitz (pab) Materials in Radiance

... thanks

- A very big *Thank You!* to Greg for his year-round support and bug-fixes.
- Thanks to Jan for the opportunity for this little summary on materials.
- Thank you for your interest and attention!

Happy rendering!

Peter Apian-Bennewitz (pab)

Materials in Radiance

August 2025

\$RCSfile: pab-brdf-summary-2025.tex,v \$ Revision: 1.66 \$ Date: 2025/08/24 07:46:14 \$ contact info@pab.eu prior to commercial use. compiled using \$\$MEXbeamer\$ class