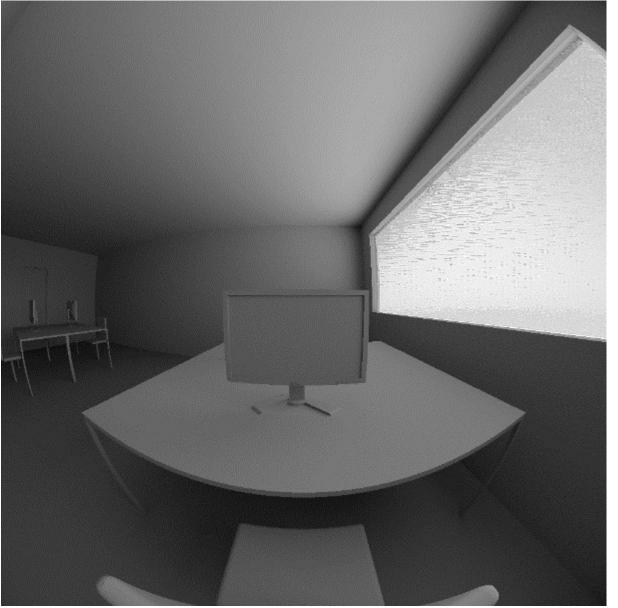
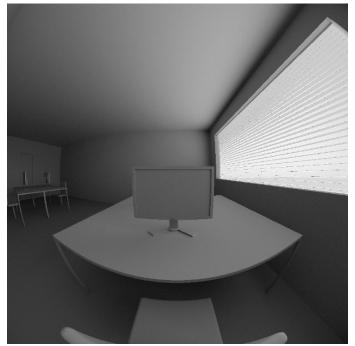
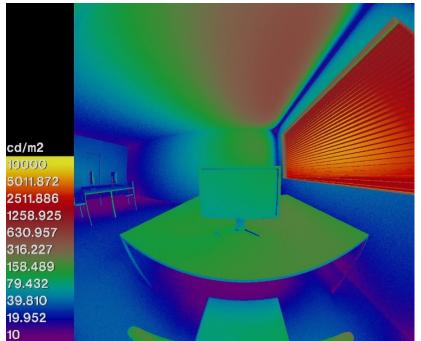
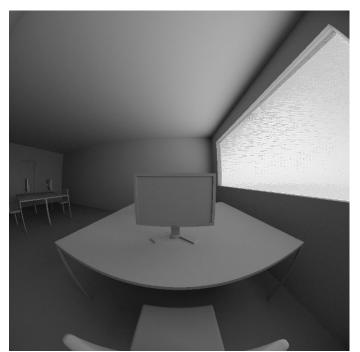
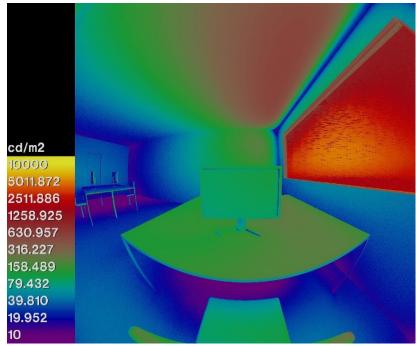

On the way to an ISO/CIE standard for BSDF data generation for complex fenestration systems

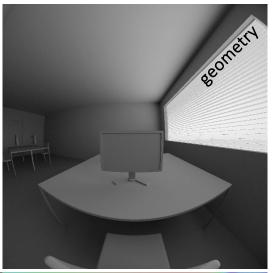

David Geisler-Moroder, Eleanor S. Lee, Lars O. Grobe, Taoning Wang, Greg Ward

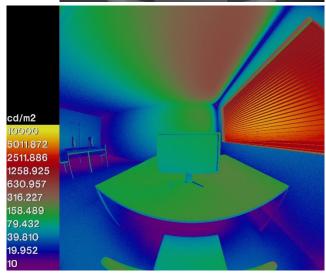

23rd International Radiance Workshop August 27-29, 2025 Lausanne, Switzerland

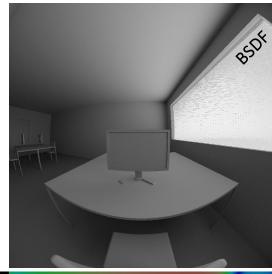


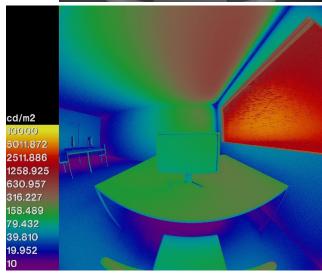


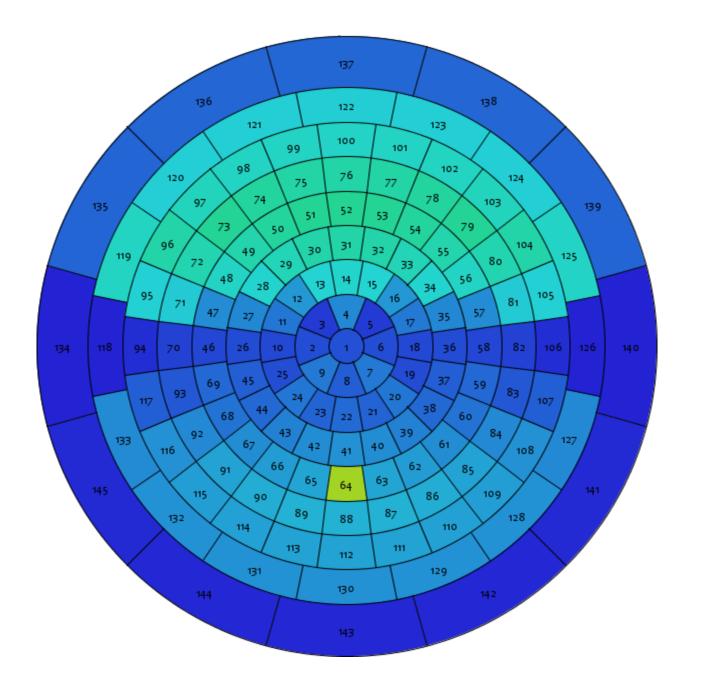


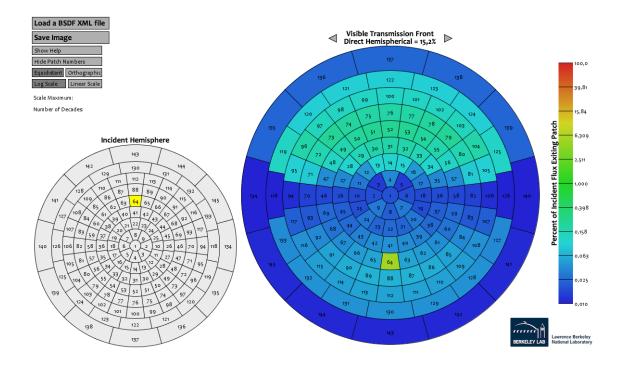


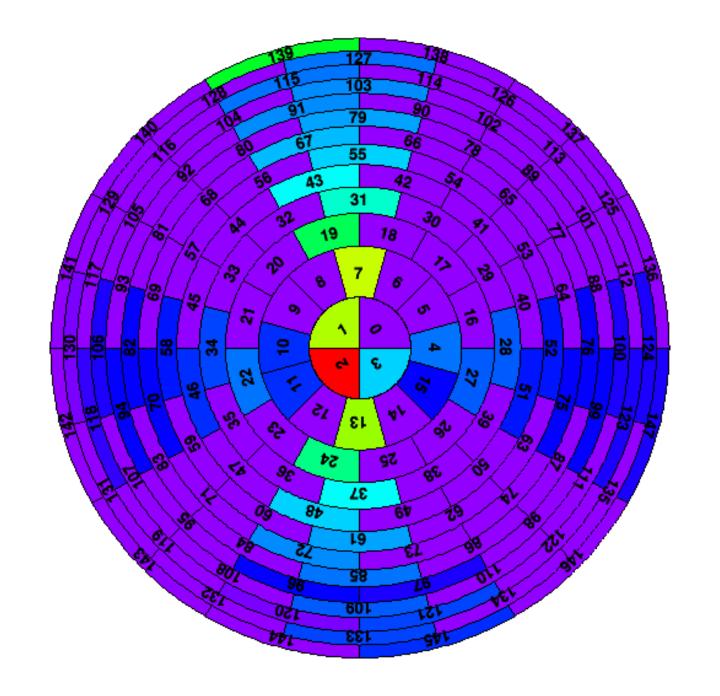


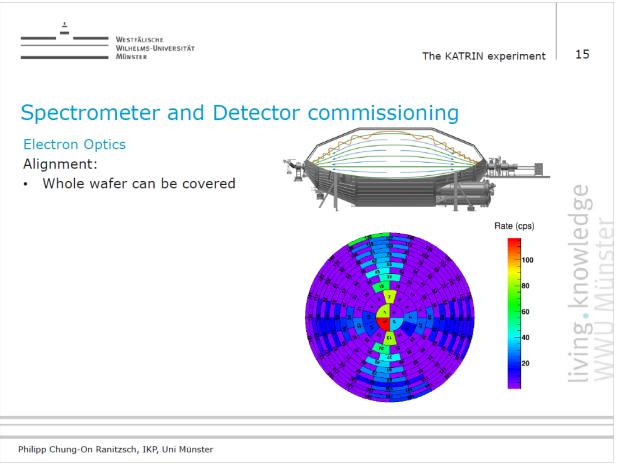



BSDF Background


- One way for including daylighting and shading systems (CFS) in simulations
 - Lighting simulations (sun & skylight)
 - Energy simulations (angular dependent solar gains)
- Already implemented in various tools

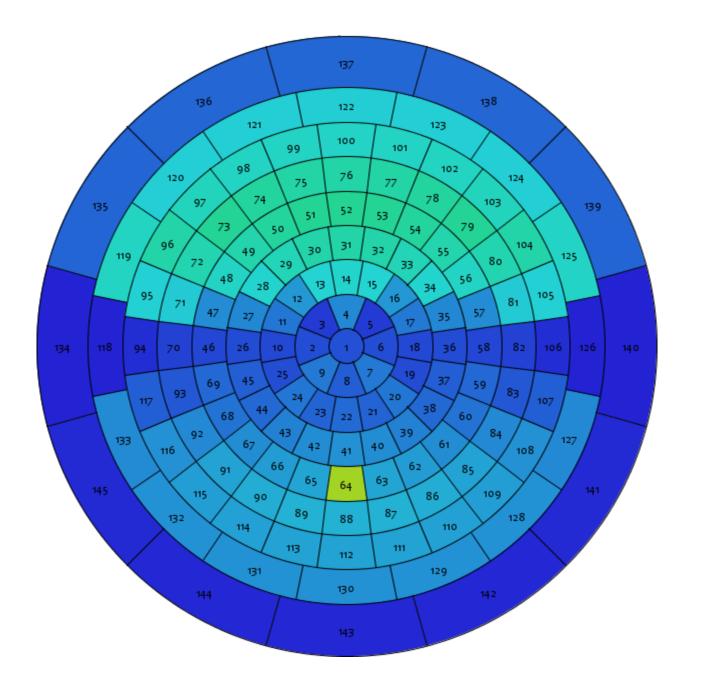


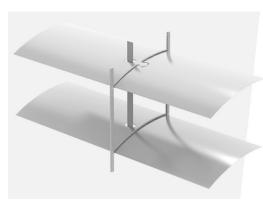

BSDF Data


```
04 Aussenraffstore 00deg.xml
      <?xml · version="1.0" · encoding="UTF-8"?>
 "http://www.w3.org/2001/XMLSchema-instance".xsi:schemaLocation="http://windows.lbl.gov
       BSDF-v1.4.xsd">
          ><WindowElementType>System</WindowElementType>
        →<Optical>
         \rightarrow < Laver>
                 <Material>
                     <Name>DALEC AR 00deg 2panes
                     <Manufacturer></Manufacturer>
                     <Thickness · unit="Meter">0.114000</Thickness>
                     <DeviceType>Other
                  </Material>
                 ><DataDefinition>
                     <IncidentDataStructure>Columns</IncidentDataStructure>
                         <AngleBasisName>LBNL/Klems · Full</AngleBasisName>
                         <AngleBasisBlock>
                            ><Theta>0.000000</Theta>
                             ><nPhis>1</nPhis>
 19
                             <ThetaBounds>
                               -><LowerTheta>0.000000</LowerTheta>
21
                                <UpperTheta>5.000000</UpperTheta>
                            →</ThetaBounds>
                         </AngleBasisBlock>
```

• • •

```
⊟<WavelengthData>
 <LayerNumber>System</LayerNumber>
 <Wavelength·unit="Integral">Visible</Wavelength>
 <SourceSpectrum>CIE · Illuminant · D65 · 1nm . ssp</SourceSpectrum>
 <DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>
=<WavelengthDataBlock>
 <WavelengthDataDirection>Transmission Front</WavelengthDataDirection>
 <ColumnAngleBasis>LBNL/Klems · Full</ColumnAngleBasis>
 <RowAngleBasis>LBNL/Klems Full
 <ScatteringDataTvpe>BTDF</ScatteringDataTvpe>
--
ScatteringData>
30.988064, 0.000306, 0.000975, 0.001080, 0.000975, 0.000306, 0.000202, 0.000385, 0.000202,
 0.000304, 0.000924, 0.001381, 0.001359, 0.001450, 0.001367, 0.001381, 0.000947, 0.000304,
0.000226, 0.000707, 0.001622, 0.001978, 0.001652, 0.000707, 0.000250, 0.000313, 0.001097,
0.001376, 0.001772, 0.002019, 0.002102, 0.002019, 0.001772, 0.001376, 0.001097, 0.000313,
 0.000395, 0.001679, 0.003236, 0.004209, 0.004540, 0.004209, 0.003236, 0.001679, 0.000395,
0.000346, 0.001288, 0.001638, 0.002160, 0.002541, 0.002773, 0.002850, 0.002773, 0.002541,
0.002160, 0.001638, 0.001288, 0.000346, 0.000557, 0.002682, 0.004748, 0.006262, 0.007182,
0.007490, 0.007182, 0.006262, 0.004748, 0.002682, 0.000557, 0.000413, 0.001313, 0.002188,
0.002866, 0.002711, 0.002439, 0.002356, 0.002439, 0.002711, 0.002866, 0.002188, 0.001313,
0.000413, 0.001330, 0.004824, 0.007543, 0.004720, 0.003039, 0.002583, 0.003039, 0.004720,
0.007543, 0.004824, 0.001330, 0.000560, 0.001804, 0.002933, 0.002327, 0.002088, 0.001963,
0.001943, 0.001963, 0.002088, 0.002327, 0.002933, 0.001804, 0.000560, 0.003167, 0.007806,
0.002213, 0.000615, 0.000599, 0.000593, 0.000599, 0.000615, 0.002213, 0.007806, 0.003167,
0.000892, 0.002718, 0.001872, 0.001692, 0.001671, 0.001690, 0.001872, 0.002617, 0.000892,
0.004794, 0.000573, 0.000542, 0.000534, 0.000542, 0.000573, 0.003911, 0.001691, 0.001569,
0.001467, 0.001467, 0.001467, 0.001569, 0.001691, 0.000490, 0.000469, 0.000469, 0.000469,
0.000490,
0.000307, 31.536905, 0.000970, 0.001074, 0.000970, 0.000304, 0.000201, 0.000383, 0.000201,
0.000302, 0.000919, 0.001373, 0.001352, 0.001442, 0.001360, 0.001373, 0.000942, 0.000302,
```

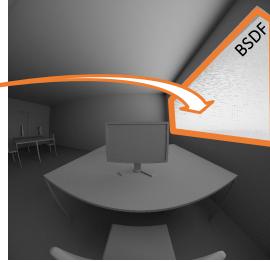


KATRIN – Karlsruhe Tritium Neutrino Experiment

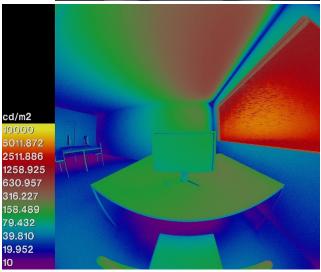

WIKIPEDIA The Free Encyclopedia Q Search Wikipedia Search **KATRIN** 文A 6 languages Article Talk Read Edit View history Tools From Wikipedia, the free encyclopedia Coordinates: 49°05'45'N 8°26'10'E Construction and assembly KATRIN is a German acronym (Karlsruhe Tritium Neutrino Experiment) for an undertaking to Experiment measure the mass of the electron antineutrino with sub-eV precision by examining the Results spectrum of electrons emitted from the beta decay of tritium. The experiment is a recognized Importance CERN experiment (RE14).^{[1][2]} The core of the apparatus is a 200-ton spectrometer. External links In 2015, the commissioning measurements on this spectrometer were completed, References successfully verifying its basic vacuum, transmission and background properties.[3] The experiment began running tests in October 2016. The inauguration took place 11 June 2018 with the first tritium measurements by the experiment (the so-called First Tritium or FT 2-week engineering run in mid-2018). The projected experiment duration at the time was 5 years. The to the Karlsruhe Institute of first science measurements (so-called first campaign) took place 10 April 2019.[4] In February 2022, the experiment announced an upper limit of $m_v < 0.8 \text{ eV } c^{-2}$ at 90% confidence level. [5][6] In April 2025 this result was improved to m_v < 0.45 eV c⁻² at the same confidence level. [7] Construction and assembly [edit] The spectrometer was built by MAN DWE GmbH in Deggendorf. Although only 350 km from Karlsruhe, the tank's size made land transport impossible. [8] Instead, it was shipped in autumn 2006 by water, down the Danube to the Black Sea, through the Mediterranean Sea and Atlantic Ocean to Rotterdam, then up the Rhine to Karlsruhe. This 8600 km long detou limited land travel to only the final 7 km from the Leopoldshafen docks to the laboratory. The construction proceeded well with several of the major components on-site by 2010. The its main components.[5] main spectrometer test program was scheduled for 2013 and the complete system integration for 2014. [9] The experiment is located at the former Forschungszentrum Karlsruhe, now Campus Nord of the Karlsruhe Institute of Technology.

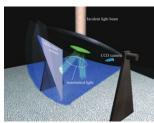
https://en.wikipedia.org/wiki/KATRIN

https://www.taup-conference.to.infn.it/2015/day3/parallel/nua/1 ranitzsch.pdf

Example BSDF: Exterior venetian blinds @ 0° tilt

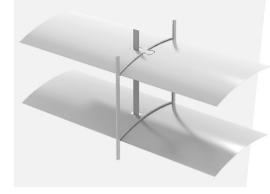


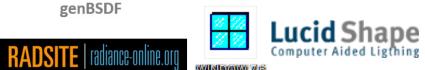

Example: HELLA AF 60 www.hella.info


BSDF Data

```
■ 04_Aussenraffstore_00deg.xml 🗵
                   <?xml · version="1.0" · encoding="UTF-8"?>
               □<WindowElement · xmlns="http://windows.lbl.gov" · xmlns:xsi=</pre>
                    "http://www.w3.org/2001/XMLSchema-instance".xsi:schemaLocation="http://windows.lbl.gov
                   BSDF-v1.4.xsd">
                  <WindowElementType>System</WindowElementType>
            □ →<Optical>
              ⊟ → < Layer>
                                                    ><Material>
                                                                 <Name>DALEC_AR_00deg_2panes
                                                                 <Manufacturer></Manufacturer>
                                                                <Thickness · unit="Meter">0.114000</Thickness>
                                                                <DeviceType>Other
                                                     </Material>
                                                      <DataDefinition>
                                                               ><IncidentDataStructure>Columns</IncidentDataStructure>
                                                                          <AngleBasisBlock>
                                                                                     ><Theta>0.000000</Theta>
                                                                                      ><nPhis>1</nPhis>
 19
                                                                                      <ThetaBounds>
                                                                                                <LowerTheta>0.000000/LowerTh
                                                                                                 <UpperTheta>5.000000</Upper</pre>
                                                                                    →</ThetaBounds>
                                                                           </AngleBasisBlock>
 ...
               □<WavelengthData>
                  <LayerNumber>System</LayerNumber>
                  <Wavelength unit="Integral">Visible</Wavelength>
                  <SourceSpectrum>CIE Illuminant D65 1nm.ssp/SourceSpectrum>
                  <DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>
                =<WavelengthDataBlock>
                   <WavelengthDataDirection>Transmission Front</WavelengthDataDirection>
                   <ColumnAngleBasis>LBNL/Klems · Full</ColumnAngleBasis>
734
                   <RowAngleBasis>LBNL/Klems Full
                  <ScatteringDataType>BTDF</ScatteringDataType>
736
                ScatteringData>
                  30.988064, 0.000306, 0.000975, 0.001080, 0.000975, 0.000306, 0.000202, 0.000385, 0.000202,
                   0.000304, 0.000924, 0.001381, 0.001359, 0.001450, 0.001367, 0.001381, 0.000947, 0.000304,
                   0.000226, 0.000707, 0.001622, 0.001978, 0.001652, 0.000707, 0.000250, 0.000313, 0.001097,
                   0.001376, \cdot 0.001772, \cdot 0.002019, \cdot 0.002102, \cdot 0.002019, \cdot 0.001772, \cdot 0.001376, \cdot 0.001097, \cdot 0.000313, \cdot 0.001097, \cdot 0.000313, \cdot 0.001097, \cdot 0.001097, \cdot 0.000313, \cdot 0.001097, \cdot 0.00109, \cdot 0.00
                   0.000346, 0.001288, 0.001638, 0.002160, 0.002541, 0.002773, 0.002850, 0.002773, 0.002541,
                   0.002160, 0.001638, 0.001288, 0.000346, 0.000557, 0.002682, 0.004748, 0.006262, 0.007182,
                   0.007490, \cdot 0.007182, \cdot 0.006262, \cdot 0.004748, \cdot 0.002682, \cdot 0.000557, \cdot 0.000413, \cdot 0.001313, \cdot 0.002188, \cdot 0.001313, \cdot 0.00
                   0.002866, 0.002711, 0.002439, 0.002356, 0.002439, 0.002711, 0.002866, 0.002188, 0.001313,
                   0.000413, 0.001330, 0.004824, 0.007543, 0.004720, 0.003039, 0.002583, 0.003039, 0.004720,
                   0.007543, 0.004824, 0.001330, 0.000560, 0.001804, 0.002933, 0.002327, 0.002088, 0.001963,
                   0.001943, 0.001963, 0.002088, 0.002327, 0.002933, 0.001804, 0.000560, 0.003167, 0.007806,
                   0.002213, 0.000615, 0.000599, 0.000593, 0.000599, 0.000615, 0.002213, 0.007806, 0.003167,
                   0.000892, 0.002718, 0.001872, 0.001692, 0.001671, 0.001690, 0.001872, 0.002617, 0.000892,
                   0.004794, 0.000573, 0.000542, 0.000534, 0.000542, 0.000573, 0.003911, 0.001691, 0.001569,
                   0.001467, 0.001467, 0.001467, 0.001569, 0.001691, 0.000490, 0.000469, 0.000469,
                   0.000490,
                  0.000307, 31.536905, 0.000970, 0.001074, 0.000970, 0.000304, 0.000201, 0.000383, 0.000201,
                   0.000302, 0.000919, 0.001373, 0.001352, 0.001442, 0.001360, 0.001373, 0.000942, 0.000302,
```

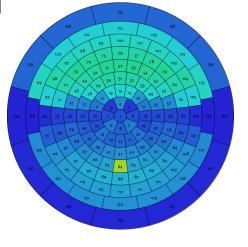

BSDF Data Generation


genBSDF



Example: HELLA AF 60 www.hella.info

555



WINDOW 7.6

Virtual gonio-photometer based on

History of BSDFs for CFS

(an excerpt)

1977: Definition of nomenclature for BRDFs

F. Nicodemus et al.

1999: IEA SHC Task 21: Measurement of BTDFs

IEA SHC Task 21 experts

2006: Bidirectional photometric data for CFS

M. Andersen, J. de Boer

2007: BTDFs in mkillum

G. Ward

2009: Three-phase method

G. Ward

2010: Scanning goniophotometer for BTDF measurements

P. Apian-Bennewitz

2011: Simulating the Daylight performance of CFS

G. Ward, R. Mistrick, E. Lee, A. McNeil, J. Jonsson

2011: BSDF Material Primitive & Variable-resolution BSDFs G. Ward, A. McNeil

History of BSDFs for CFS (cont'd)

(an excerpt)

2014: Tensor tree BSDFs

G. Ward, M. Kurt, N. Bonneel

2014: Five-phase method

A. McNeil

2021: Peak extraction

D. Geisler-Moroder, G. Ward, T. Wang, E. Lee

2021: IEA SHC Task 61: white paper & round robin

IEA SHC Task 61 experts

2022: Field Validation

T. Wang, E. Lee, G. Ward, T. Yu

2024: LRT Paper

IEA SHC Task 61 experts

2024: Launch of ISO/CIE 25176

D. Geisler-Moroder / IEA SHC Task 70

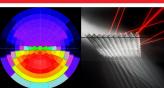
The 5-phase method

heinland-Pfälzische Technische Ur Hunan University, Changsha, China Anyhere Software, Berkeley, CA, USA Standardized methods for generating angle-dependent, bidirectional, solar-optical properties for complex fenestration systems do not exist, which means that energy and daylight evaluations in building performance simulations often suffer from major inaccuracies. This position paper provides an overview of state-of-the-art data-driven

BSDF Data generation for daylight applications: A call for international

⁹University of Innsbruck, Innsbruck, Austria
^bLawrence Berkeley National Laboratory, Berkeley, CA, USA "Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
"Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany Vrije Universiteit Brussel, Brussel, Belgium OLucerne School of Engineering and Architecture, Horw, Switzerlan

Standardized methods for characterizing angle dependent, solar-optical properties of transparent


Lighting Res. Technol. 2024; XX: 1-25

standardization

objective evaluation of energy performance

tance). Standardized methods do not exist however

BSDF generation procedures for daylighting systems

Peak extraction in daylight simulations using BSDF data

Speaker:

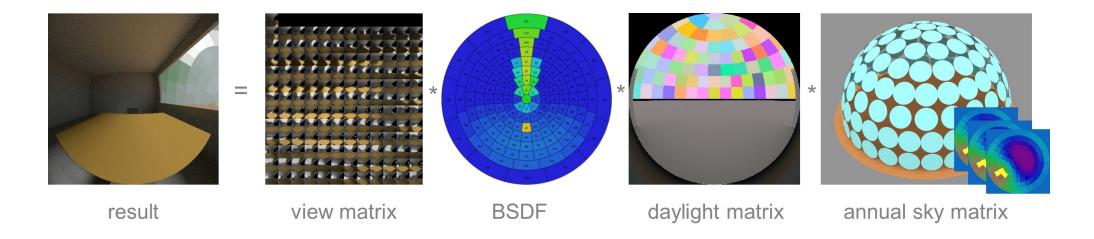
David Geisler-Moroder Bartenbach GmbH, Aldrans, Austria

David Geisler-Moroder, Bartenbach GmbH, Aldrans, Austria Gregory J. Ward. Anyhere Software. Berkeley. CA. USA Taoning Wang Lawrence Berkeley National Laboratory Berkeley CA USA

Fleanor S Lee Lawrence Berkeley National Laboratory Berkeley CA USA

ISO/CIE CD 25176

About ISO


Light and lighting — Daylight in buildings — BSDF data generation for complex fenestration systems

Insights & news

Under development

A draft is being reviewed by the committee

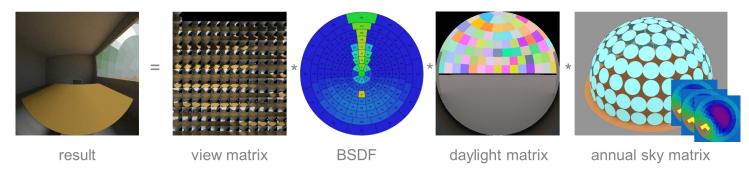
3-Phase-Method

I = VTDS

I ... result, e.g. annual illuminance values

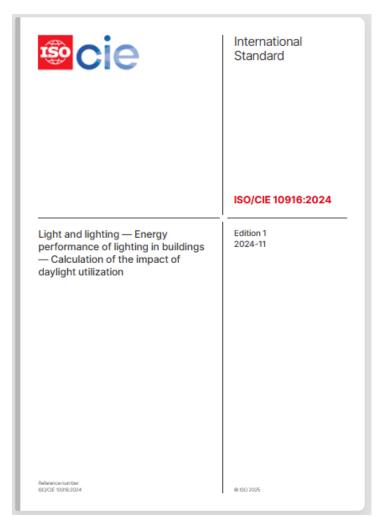
V ... view matrix, combining measurement points with patches at interior of façade

T ... transmission matrix, i.e. BTDF (transmission component of BSDF)


D ... daylight matrix, combining patches at exterior of façade with sky patches

S ... annual sky matrix

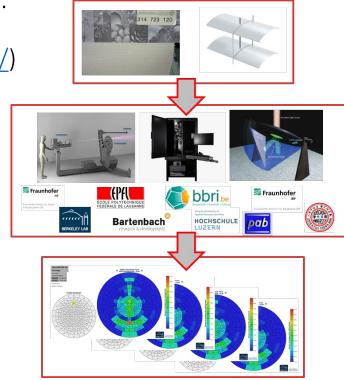
Trigger: ISO/CIE 10916:2024

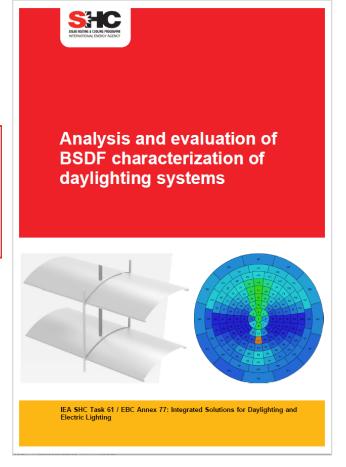

New Annex B: Comprehensive hourly calculation

- Matrix based daylight calculation method relying on BSDF data
- 3-Phase-Method

I = VTDS

- I ... result, e.g. annual illuminance values
- V ... view matrix, combining measurement points with patches at interior of façade
- T ... transmission matrix, i.e. BTDF (transmission component of BSDF)
- D ... daylight matrix, combining patches at exterior of façade with sky patches
- S ... annual sky matrix




International Collaboration & Harmonization

Completed IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting (https://task61.iea-shc.org/)

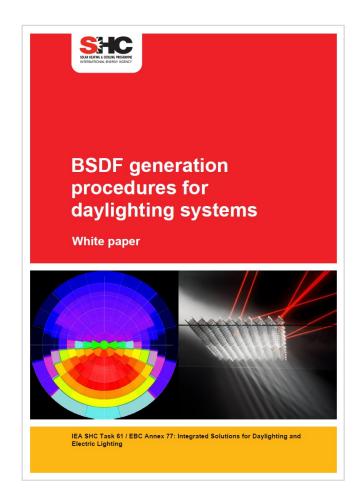
Analysis and Evaluation Report

- » Review of currently used methods
- » Round Robin test

Online:

https://doi.org/10.18777/ieashc-task61-2021-0012

International Collaboration & Harmonization


Completed IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting (https://task61.iea-shc.org/)

White Paper

- » BSDF definitions
- » Scope
- » BSDF resolution
- » Proposed BSDF generation procedures
- » Proposed characterization types for various kinds of daylight systems

Online:

https://doi.org/10.18777/ieashc-task61-2021-0001

International Collaboration & Harmonization

Lighting Research & Technology OnlineFirst, November 26, 2024

© The Chartered Institution of Building Services Engineers 2024, Article Reuse Guidelines https://doi.org/10.1177/14771535241291838


BSDF Data generation for daylight applications: A call for international standardization

D Geisler-Moroder (D a, ES Leeb, P Apian-Bennewitzc, J de Boerd, B Buenoe, B Deroisy (D f, Y Fangd, LO Grobeg, M Hauera, S Hoffmann J, JC Jonssonb, C Maurer (D e, D Plörera, S Subramaniam (D j, Z Tian (D k, T Wangb, G Wardl, R Weitlanerm, and HR Wilsone

Abstract

Standardized methods for generating angle-dependent, bidirectional, solar-optical properties for complex fenestration systems do not exist, which means that energy and daylight evaluations in building performance simulations often suffer from major inaccuracies. This position paper provides an overview of state-of-the-art data-driven methods for characterizing light scattering properties of fenestration materials and blind systems (e.g. fabrics, metal slats, patterned glazing), validation via laboratory, simulation and field tests, and salient issues in support of standardization of such methods via the International Standardization Organization (ISO). The ISO standard is intended to provide the fundamental underpinnings for recently mandated daylight standards that rely on bidirectional scattering distribution function data for climate-based daylight modelling and building performance simulations.

https://doi.org/10.1177/ 14771535241291838

ISO/CIE 25176

Standards

About ISO

Sectors

Insights & news

Taking part

Store

SCOPE

This document applies to the broad range of materials and systems, e.g. fabric shades, venetian blinds, prismatic glass, etc., that are used on windows and skylights to control daylight, sunlight, glare, privacy, and view to the outdoors. It specifies procedures for producing comprehensive angle-dependent, solar-optical scattering data that can then be used to compute a wide range of performance metrics.

This document specifies procedures for:

- » characterizing angle-dependent, optical properties (transmittance, reflectance, absorptance) of glazing and shading materials and systems, i.e. "complex fenestration systems" (CFS) and then
- » generating tabulated bidirectional scattering distribution function (BSDF) data sets for use as input to simulation tools or standardized calculation methods such as the comprehensive hourly calculation method defined in ISO/CIE 10916:2024.

Proposed structure

- » Introduction
- » Scope
- » Normative references
- » Terms, definitions
- » BSDF data resolution
- » BSDF generation procedures
 - BSDF generation procedure for microscopic systems
 - BSDF generation procedure for macroscopic systems
- » Reporting of additional information
- » Annexes

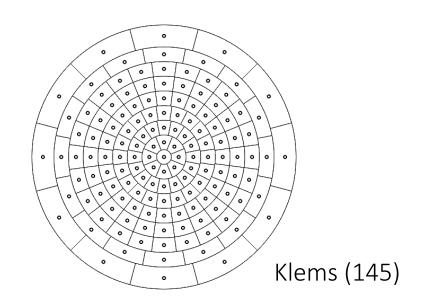
BSDF data resolution

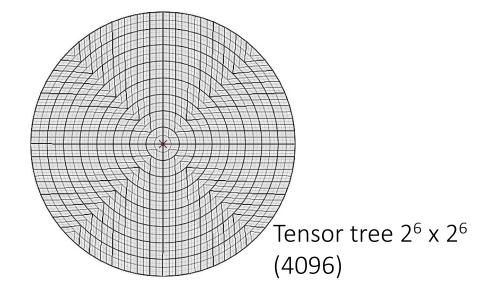
» Low-resolution BSDF

average patch sizes between 0.0239 sr and 0.1373 sr

(i.e. cones with full opening angles of 10° to 24°)

Examples:


Klems, IEA21, Tensor tree up to $2^4 * 2^4$ (256)


» High-resolution BSDF

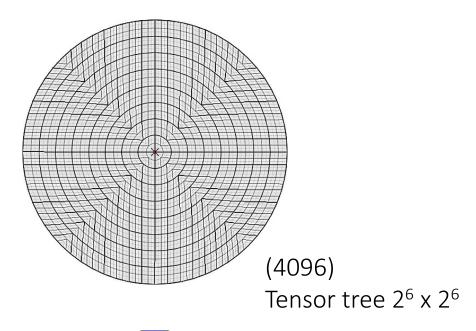
average patch sizes less than 0.0239 sr (i.e. cones with full opening angles less than 10°)

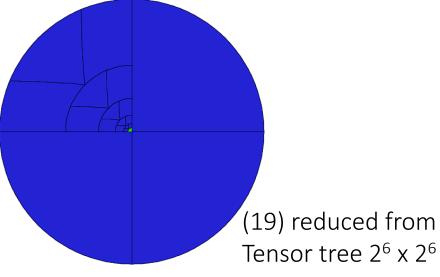
Examples:

Tensor tree $2^5 * 2^5$ (1024) or higher

BSDF data resolution

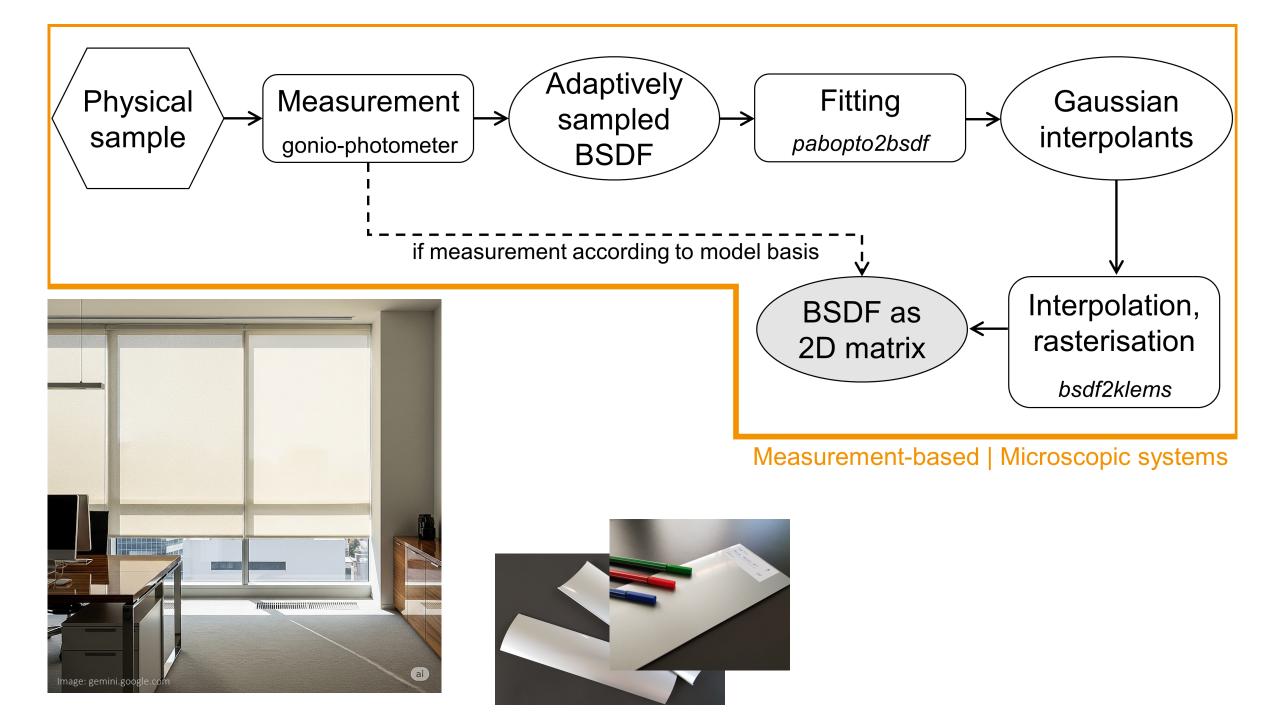
» Fixed-resolution BSDF


2D (**n**×**m**) matrix for **n** incident and **m** exiting directions


Examples:

Klems (145×145), IEA21 (145×1297), Tensor tree (n × n) with $n = 2^i * 2^i$

» Variable resolution BSDF


Tensor tree resolution reduced for areas with almost diffuse scattering (i.e. nearly constant BSDF), and high for non-diffuse areas to preserve peaks

Proposed structure

- » Introduction
- » Scope
- » Normative references
- » Terms, definitions
- » BSDF data resolution
- » BSDF generation procedures
 - BSDF generation procedure for microscopic systems
 - BSDF generation procedure for macroscopic systems
- » Reporting of additional information
- » Annexes

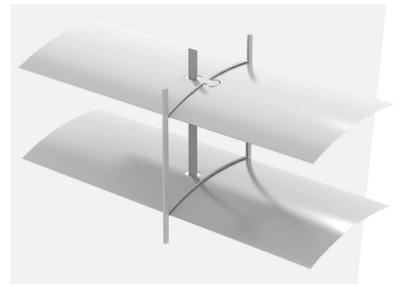
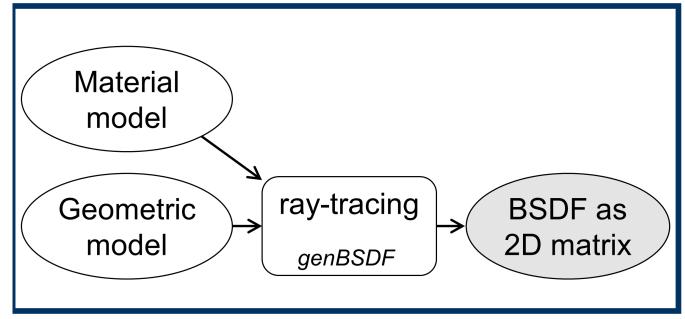
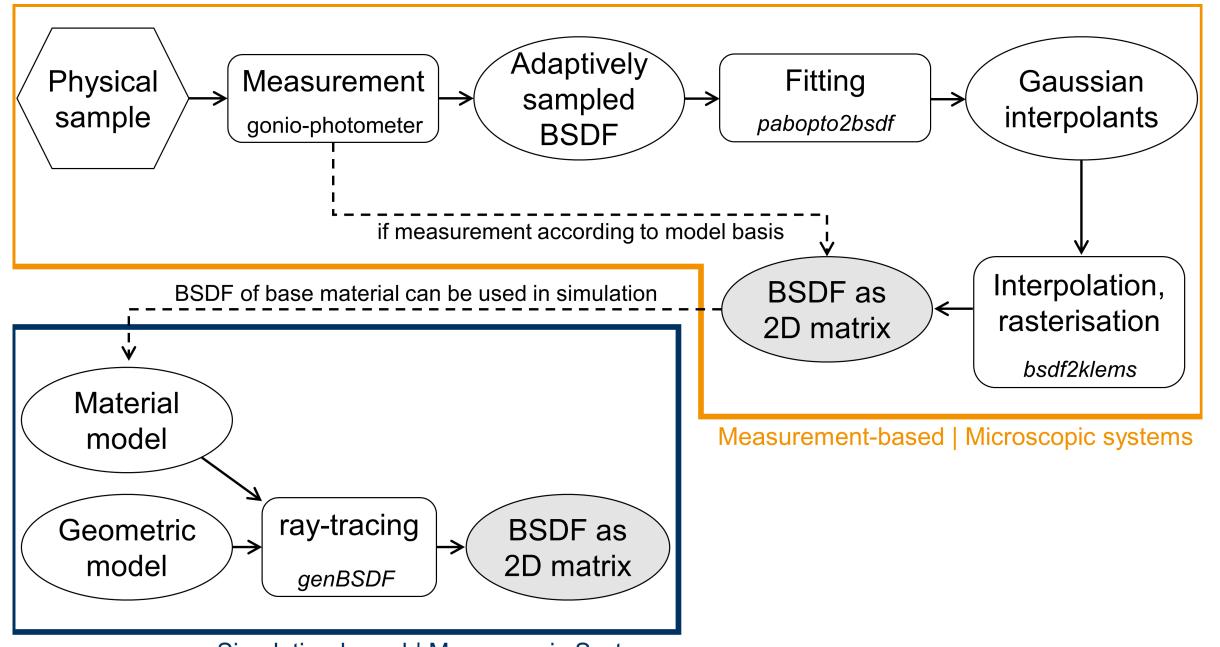
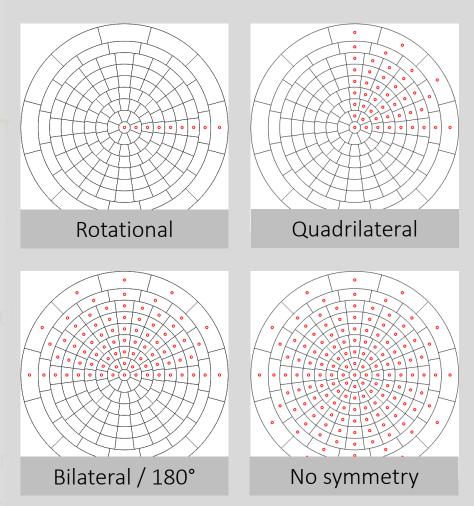
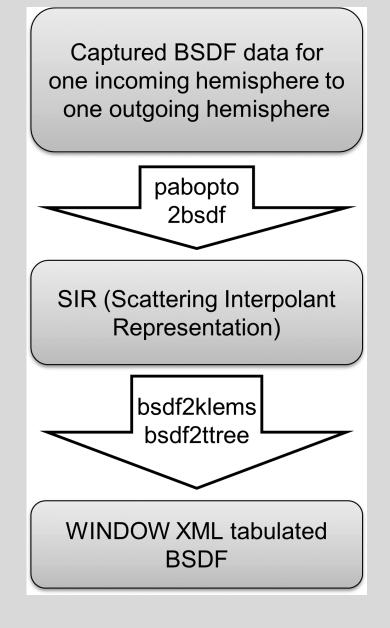




Image: <u>www.hella.info</u>

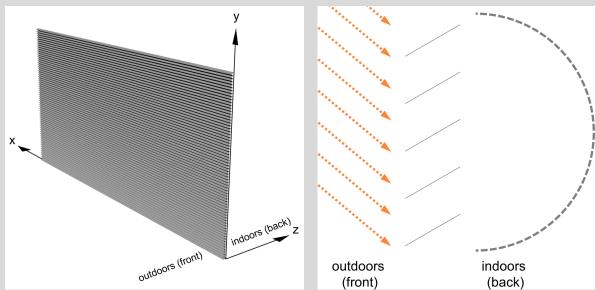

Simulation-based | Macroscopic Systems

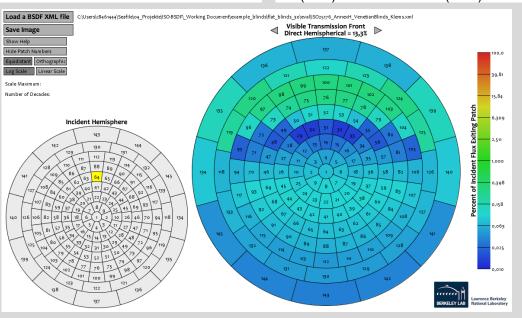

Simulation-based | Macroscopic Systems

- » Angular bases for BSDF discretization
- » Incident directions for goniophotometric measurements
- » Interpolation of goniophotometer measurements
- » Validation of the direct-hemispherical transmittance values
- » Data format for tabulated BSDF data sets
- » Preparation of proxy geometry for inclusion in BSDF data file
- » Example procedure for fabric shades
- » Example procedure for venetian blinds
- » Generation of tabulated BSDF data with high spatial resolution
- » Applicability of parametric models in the BSDF generation for macroscopic systems

- » Angular bases for BSDF discretization
- » Incident directions for goniophotometer measuren
- » Interpolation of goniophotometer measurements
- » Validation of the direct-hemispherical transmittance
- » Data format for tabulated BSDF data sets
- » Preparation of proxy geometry for inclusion in BSDF
- » Example procedure for fabric shades
- » Example procedure for venetian blinds
- » Generation of tabulated BSDF data with high spatial
- » Applicability of parametric models in the BSDF gener macroscopic systems

- » Angular bases for BSDF discretization
- » Incident directions for goniophotometer measureme
- » Interpolation of goniophotometer measurements
- » Validation of the direct-hemispherical transmittance
- » Data format for tabulated BSDF data sets
- » Preparation of proxy geometry for inclusion in BSDF
- » Example procedure for fabric shades
- » Example procedure for venetian blinds
- » Generation of tabulated BSDF data with high spatial
- » Applicability of parametric models in the BSDF gener macroscopic systems




- » Angular bases for BSDF discretization
- » Incident directions for goniophotometer measuren
- » Interpolation of goniophotometer measurements
- » Validation of the direct-hemispherical transmittance
- » Data format for tabulated BSDF data sets
- » Preparation of proxy geometry for inclusion in BSD
- » Example procedure for fabric shades
- » Example procedure for venetian blinds
- » Generation of tabulated BSDF data with high spatia
- » Applicability of parametric models in the BSDF gene macroscopic systems

- » BSDF Data File Format
- » XML Schema Definition
- » MetaData

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- Created by: genBSDF -n 12 +geom meter +mgf +f +b -c 7250
ISO25176 AnnexH VenetianBlinds.mgf -->
<WindowElement xmlns:bsdf="urn:iso:cie:25176:bsdf:1.0"</pre>
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:iso:cie:25176:bsdf:1.0
https://www.iso.org/schemas/example/25176/bsdf/1.0/bsdf.xsd">
<WindowElementType>System</WindowElementType>
<FileType>BSDF</FileType>
<Optical>
<Layer>
   <Material>
      <Name>Name</Name>
      <Manufacturer>Manufacturer
      <DeviceType>Other
      <Thickness unit="meter">0.034641</Thickness>
      <Width unit="meter">4</Width>
      <Height unit="meter">2</Height>
   </Material>
   <Geometry format="MGF">
<MGFblock unit="meter">xf -t 0.000000 -0.980000 0
# Y-axis points "up", Z-axis into room, right-handed coordinates
m LightGreyLambert =
rd .7
rs .0 .0
sides 2
o VenetianBlinds
xf -rx -30 -a 67 -t 0 .03 0
o Slat
v v1 =
p - 2 0 - .04
v v2 =
```

- » Angular bases for BSDF discretization
- » Incident directions for goniophotomete
- » Interpolation of goniophotometer meas
- » Validation of the direct-hemispherical ti
- » Data format for tabulated BSDF data set
- » Preparation of proxy geometry for inclu
- » Example procedure for fabric shades
- » Example procedure for venetian blinds
- » Generation of tabulated BSDF data with
- » Applicability of parametric models in the macroscopic systems

- » Angular bases for BSDF discretization
- » Incident directions for goniophotometer measuren
- » Interpolation of goniophotometer measurements
- » Validation of the direct-hemispherical transmittance
- » Data format for tabulated BSDF data sets
- » Preparation of proxy geometry for inclusion in
- » Example procedure for fabric shades
- » Example procedure for venetian blinds
- » Generation of tabulated BSDF data with high spatia
- » Applicability of parametric models in the BSDF generation for macroscopic systems

For the following materials, the use of the referenced parametric models is considered valid without further justification if the selection of parameters is justified and reported.

Material	Parametric model(s)
Clear float glass w/o coating	Fresnel model or Schlick's approximation
Clear float glass w coating	Hybrid equivalent model, Single- thin-film model
Conductive and non-conductive flat surfaces with no visible structure, i.e., mirror-like reflection	Ward/Geisler-Moroder/Dür BRDF model

Timeline Timeframe Time since registration STATUS Registration date In stage 2024-06-20 36 months 13 months 30.20 CD consultation initiated for 1 month 3 days reparation of the draft Enquiry 30.20 Current Stage 6 WD CD Go to **Version Description** Target date Limit date Started Status draft 10.00 Proposal for new project registered 2024-03-27 Closed 10.20 New project ballot initiated 2024-03-27 2024-03-27 Closed 10.60 Close of voting 2024-06-19 2024-06-20 Closed 2025 10.99 New project approved 2024-06-20 Closed New project registered in TC/SC work programme 2024-06-20 20.00 Closed 20.20 Working draft (WD) study initiated 2025-02-05 2025-02-05 Closed Today Close of comment period 20.60 2025-03-05 2025-03-06 Closed 30.00 Committee draft (CD) registered 2025-06-30 2025-07-03 Closed CD consultation initiated Ø 2025-07-16 30.20 Current Project approved (clock starts) 30.60 Close of comment period Awaiting CD referred back to Working Group 30.92 Awaiting Meeting 30.99 CD approved for registration as DIS Awaiting Past period 2026-02-15 2026-06-20 🚯 DIS registered 40.00 Awaiting Full report circulated: DIS approved for registration as FDIS 40.99 Awaiting Critical period Final text received or FDIS registered for formal approval 50.00 Awaiting International Standard under publication 60.00 Awaiting International Standard published 2027-06-20 2027-06-20 60.60 Awaiting Show less ^

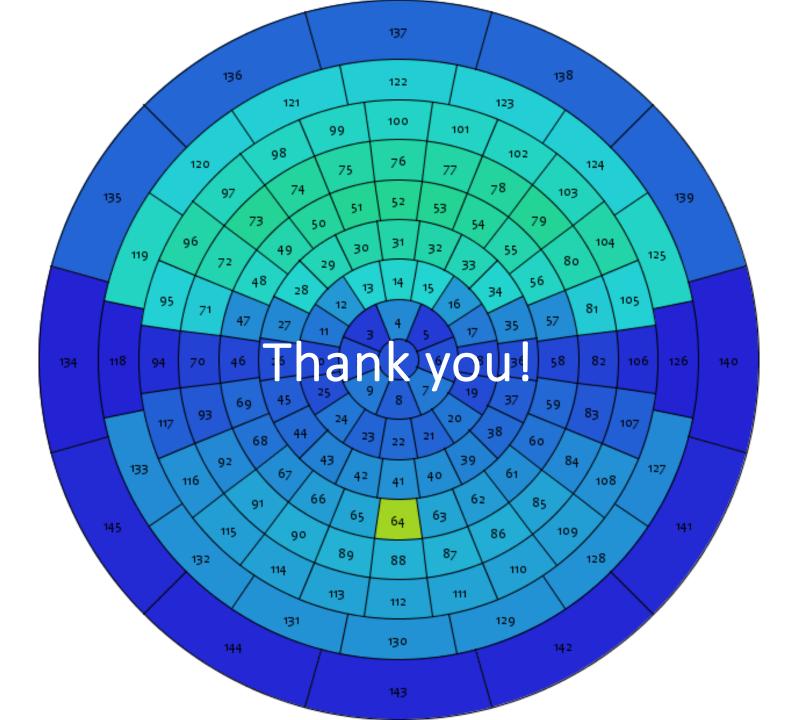
- » Do you use BSDFs for CFS?
 In Radiance? Or in other tools as well? If so, which ones?
- » If you obtain BSDFs externally, where do you get them from? And do you receive information about how they were created?
- » Is the origin and validity of BSDF data important to you? How do you verify this?
- » If you create BSDFs yourself, what methodology do you use?
- » What are the biggest hurdles/challenges when creating BSDFs?

Acknowledgements

"CFS4LowCarb: Integrated Light-Thermal Solutions for Complex Fenestration Systems Towards Low Carbon Buildings"

in the "TECXPORT Bilateral Cooperation Austria – PRC/MOST 2022" programme, contract 903877, and

"IEA SHC Task 70 / EBC Annex 90 Low Carbon, High Comfort Integrated Lighting"


in the "IEA Research Cooperation" programme, contract 900356, both financed by the Federal Ministry of Austria for Innovation, Mobility and Infrastructure BMIMI and managed by the Austrian Research

Promotion Agency FFG

Funded by

Federal Ministry Innovation, Mobility and Infrastructure Republic of Austria

Dr. David Geisler-Moroder
University of Innsbruck
Technikerstraße 13, 6020 Innsbruck, Austria
David.Geisler-Moroder@uibk.ac.at

www.uibk.ac.at