

How to incorporate color influence in Discomfort Glare models

Sneha Jain, Postdoctoral Scholar, Stanford University

Radiance Workshop, Aug 27, 2024 Salt Lake City, Utah

How is glare quantified?

Discomfort glare models

HDR imaging

Photometrics measurements

User assessment survey

How do you rate glare in the field of view?

□ Imperceptible □ Noticeable □ Disturbing □ Intolerable

Physical properties of the scene

$$DGP = a.E_{v} + b.\log(1 + \sum \frac{L^{\exp 1}\omega}{E_{v}^{\exp 2}P^{\exp 3}}) + c$$

Daylight Glare Probability

Workshop 2024

Radiance

discomfort glare,

Ч

of color

Influence

How is glare quantified?

Discomfort glare models

HDR imaging

Photometrics measurements

User assessment survey

How do you rate glare in the field of view?

 \Box Imperceptible \Box Noticeable \Box Disturbing \Box Intolerable

Physical properties of the scene

$$DGP = a.E_{v} + b.\log(1 + \sum \frac{L^{\exp 1}\omega}{E_{v}^{\exp 2}P^{\exp 3}}) + c$$

Limitations!

Unable to predict glare in certain light scenarios including colored lighting

Radiance Workshop 2024

discomfort glare,

Ч

of color

Influence

Is there an influence of the color of daylight (filtered by glazing color) on discomfort glare?

Design of experiment

Participants	55 (18-31 years)
Study design	Within-between mixed factorial design
Dependent variable	Discomfort glare perception
Independent variable	Glare source colour <i>(within subject variable)</i> Glare source luminance <i>(between subject variable)</i>

Experiment protocol

Transmittance high (~2.5%) Transmittance low (~0.37%)

Total datapoints: 224

Glazing transmittance

Glazing	Visible light Transmittance (t _{v,n-} _h) weighted over V(l)
Blue_low	0.39%
Green_low	0.40%
Red_low	0.33%
Neutral_low	0.38%
Blue_high	2.25%
Green_high	2.67%
Red_high	2.48%
Neutral_ high	2.37%
View windows	8.28%

Influence of color on discomfort glare, Radiance Workshop 2024

Glazing color

CIE xy chromaticity coordinates of the glazings.

Radiance Workshop 2024 Influence of color on discomfort glare,

Daylight Conditions: Vertical illuminance levels

Daylight Conditions: Luminance values HDR Image-dervied Sun luminance (Millions cd/m2)

1 M

Neutral

Green

Experimental Scenes

Blue

Red

Daylight Conditions: Glare metric values

Radiance Workshop 2024

Influence of color on discomfort glare,

Subjective glare responses

Are you experiencing any discomfort due to glare at the moment? Yes No 1.00 0.8 31% 0.80 Daylight Glare Probability (DGP) 70 90 90 90 46% Distribution of votes 65% 72% 0.60 0.39 26 0.40 69% 0.39 ° 0.38 *0.37 54% 0.20 35% 0.2 28% 0.00 Neutral Green Blue Red Green_low Blue_low Red_low Neutral_low **Experimental Scenes** Low Transmittance conditions

Subjective glare responses

Influence of color on discomfort glare, Radiance Workshop 2024

$V(\lambda)$ Spectral Weighting doesn't work here

Getting sun (glare source) spectra

Applying VDGs from Literature: $(V(\lambda)$ for Discomfort Glare)

None of these functions were able to accurately capture the subjective responses.

 $VDG_{1}(\lambda)-10^{\circ} = V10^{\circ}(\lambda) + (0.75 \text{ S}(\lambda))$

$$\begin{split} \mathsf{VDG}_2 \ (\lambda) - 10^{\mathrm{o}} &= \{ 0.606 V'(\lambda) + 0.157 [1.62 \mathsf{L}(\lambda) + \mathsf{M}(\lambda)] \} + 0.751 [L(\lambda) - M(\lambda)] + \\ 0.109 [(1.62 \mathsf{L}(\lambda) + \mathsf{M}(\lambda)) - (-2.3452) S(\lambda)] \end{split}$$

 $VDG_{3} = V(\lambda) + 0.578 * L(\lambda) - 1.235 M(\lambda) + 0.182S(\lambda) + 0.02 * L(\lambda) + M(\lambda) - 5.835S(\lambda)$

 $VDG_4 = B(\lambda) = V(\lambda) + 0.5 Mel(\lambda) + 0.6S(\lambda)$

Y. Yang, R.M. Luo, W. Huang, Assessing glare, Part 3: glare sources having different colours, Light. Res. Technol., 50 (2018),

Using Brightness instead of Luminance

Helmholtz-Kohlrausch effect (H-K effect)

Saturated colors appear to glow stronger compared to their equiluminant but less saturated counterparts

Applying Color Appearance Models (CAM)* that accounts for H-K effect

CAM15u (Withouck et al., 2015) Based on unrelated stimuli

CAM18sl (Hermans et al., 2018) Based on unrelated self-luminous stimuli

CIECAM16 (revised version by Hellwig et al., 2024) General purpose CAM model recommended by CIE

*CAM model predicts the appearance, represented by perceptual attributes of brightness, colorfulness, hue, saturation, and whiteness.

Applying Brightness Models

Applying Brightness Models

Normalized Brightness of Experiment Scene compared across three models

Luminance Normalized to CAM range

Influence of color on discomfort glare, Radiance Workshop 2024

Parameters:

 $\alpha = 0,05 \text{ cd} \cdot \text{m}^{-2}; \quad \beta = 2,24 \text{ cd} \cdot \text{m}^{-2}; \quad k = 1,3;$

and f(x, y) is the chromatic contribution at a moderate photopic luminance level that is formulated by using only the chromaticity coordinates of the object or light, x and y, as follows (Nakano et al., 1999):

$$f(x, y) = \frac{1}{2} \log \left[-0,005 4 - 0,21 x + 0,77 y + 1,44 x^{2} - 2,97 x y + 1,59 y^{2} - 2,11 (1 - x - y) y^{2}\right] - \log y$$
(5)

Radiance Workshop 2024

Influence of color on discomfort glare,

Sneha Jain | Stanford University

Comparing Equivalent luminance

Original

Sneha Jain | Stanford University

0.7 0.6 10.59 0.59 **DGP (Leq_White)** 0.55 0.53 0.46 0.44 0.42 10.4 0.3 0.2 Red Neutral Green Blue **Experimental Scenes**

Comparing modified DGP

Modified

Original

Summary

- Red glazing is most disturbing, closely followed by blue glazing in creating discomfort glare. While Color-neutral as well as the green glazing are more comfortable ones.
- Spectral weighting $V(\lambda)$ is not suitable to characterize luminance (or glare) under brightly lit colored lighting conditions- need to consider H-K effect.
- Models which account for the H-K effect were better at predicting the perceived glare from colored sources where metrics based solely on luminance would fail.
- CAM models have a limited range of luminances over which they can accurately predict the H-K effect, more refinement is needed to predict glare of very high luminance stimuli.
- Additional extensive experiments are needed to validate, adjust, or develop a new glare model.

Acknowledgements

Stanford | **Doerr** School of Sustainability

EPFL

