Radiance
Refactoring

Effort

Greg Ward
Taoning Wang

Refactoring Plan

Stage 1 - Encapsulate core rendering functionality

In C++ classes
o Support multi-threading for Windows platform

Stage 2 - Redesign scene language for specira
o Improve material programmability and support hyperspectral color

Stage 3 - Modernize rendering code with C++

classes
o Continuous replacement of straight C code with C++

Stage 1 Status

C++ base class for ray-tracing thread manager
o Threads not currently enabled, still working out queuing mechanics

Declared C++ classes for rirace, rpict, and rcontrib

equivalents

o These classes will be called from replacement tools, but also made
accessible as direct calls from integrator platforms

Implemented and fested rirace replacement
(called “rxtrace” for now)

Implementations of rpict and rcontrib functionality

are more challenging
o Will wait until threads are working

RtraceSimulManager
Methods

LoadOctree(const char *octn)

SetfThreadCount(int nt = 0)
SetCookedCall(RayReportCall *cb, void *cd = NULL)
SefTraceCall([RayReportCall *cb, void *cd = NULL)
Ready()

EnqueueBundle(const FVECT orig_direc]], n)
FlushQueue()

Cleanup(bool everything = false)

Multi-Threading:
It’s Not All About Class

Radiance modules that are not thread-safe
Module Variable(s)
common/colrops.c g_mant, g_nexp, g_bval
common/tonemap.c tmPkg, tmFloat2BrtLUT
common/tm16bit.c static tables a top
common/bsdf.c SDcachelList
common/bsdf_m.c
common/bsdf_t.c
common/caldefn.c
common/color.c

hashtbl, htndx, htpos, ochpos, outchan, curfunc
tempbuf, tempbuflen

common/font.c fontlist
common/modobject.c modtab
common/objset.c ostable

common/readobj.c
common/readoct.c

objblock, nobjects
infn, infp, objsize, objorig, fnobjects

common/savestr stab

common/tcos costab
common/tmapluv.c

rt/ambient.c MANY

rt/data.c dtab

rt/duphead.c headfname, headfp
rt/func.c fobj, fray
rt/initotypes.c ofun

rt/m_brdf.c

rt/noise3.c gotV, x,

rt/o_mesh.c prep_edge_cache
rt/persist.c MANY

rt/preload.c

rt/raytrace.c raynum, nrays, xfseed
rt/source.c srcent, cntord, maxcntr
rt/srcsupp.c source, nsources, sfun
rt/srcdraw.c sphead

rt/srcobjstr.c source

rt/virtuals.c vobject, nvobjects

Function(s) Init only?

ALL Y
tmSetSpace, tmCvLums Y
mkLogTable, mkGamTab Y
SDgetCache, SDcacheFile N

make_cdist N
make_cdist N
ALL Sort of
tempbuffer N
getfont Y
modifier, insertobject Y
fullnode N
newobject, freeobjects Y
ALL Y
savestr N
tcos Y
luv24NewSpace, luv24inY
MOST N
getdata Y
ALL Y
initfunc, setfunc, worldftN
initotypes Y
setbrdfunc N
noise3 N
ALL N
MOST Y
Y
rayclear, newrayxf N
marksources, direct N

initstypes, newsource Y

init_drawsources, draws Post

ALL N
ALL Y

Invalid global? Cache updating? Make local? Needs mutex?

Maybe?

zZ<<<z<zzzzzzzzzzz<<zzz=zz

zzzz=<z

N

Z2<<zzzzz<<zZz<<zz<zZzzZzzZzzZ2<<<2zZz2

z2<zz<=<

Maybe

<zZz<zzzzzzzzzZzzZ2Z2<ZZ2Z2ZZ2Z2

z=<Z
)
<
o
®

zz=<2z

Maybe

N

<zzzz<z<<=<<2zg
)
<
o
®

==L
D
< <
S o
® ®

zzzz=<<

Maybe
Maybe

Maybe
N

Maybe

Needs rework? DONE?

Maybe
Maybe

<zzzz<<<<<-<z2

<=
T o
<<
T o
o 0

<<=<=<zZz=<zZ=<-<

<~ =<=<=<=<=<

N

Z2z2z2z2z2z2z2222222z2z222222z22z2zz2zz22z2z2zz2zz22

Notes

Not used by core rendering routines

Not used by core rendering routines

Not used by core rendering routines
caches loaded BSDFs

updates Monte Carlo table during render
updates Monte Carlo table during render
maintains global parsed definitions
tempbuffer() should be eliminated

loads fonts into global list

loading scene should be single-threaded
loading scene should be single-threaded
loading scene should be single-threaded
loading scene should be single-threaded
typically (always?) called during scene load
not sure who calls this tabulated math function
called by any rendering routines?

major effort to make ambient cache threadsafe
data file loads update global list

unsure if this needs attention

dynamic global variables need to be local
probably OK as initialization call

yikes - calls varset() during render

caches last computed value, which may not work with threads
caching edge tests won't thread as is

not sure if this will survive at all

not sure if this needs updating

hopefully minor issues

direct() structures should be made local
sources only added during initialization?
make rpict post-process single thread
unsure whether this should be local or not
virtual source calculation single-threaded?

Spreadsheet listing functions that may require mutex or other thread protection

Next Steps

Finish thread manager design

Add mutexes and local variables to maintain
consistency throughout code
o This is the major headache of multi-threading, aside from debugging(!)

Test multi-threading in rxtrace

Implement RpictSimulManager class
o Test functionality in rxpict replacement of rpict

Implement RconfribSimulManager class
o Test functionality in rxcontrib replacement of rcontrib

Work with integrators to test new classes

Discussion

