21st International Radiance Workshop Innsbruck, Austria

by Rob Shakespeare Shakespeare Lighting Design LLC Wednesday, August 30th

Illumination Grid (falsecolor option) helpful for approvals!

THANKS GREG!

×																																/
193.3	284.3	014121	303	303,4	257.4	24219	230.6	209.3	241.0	1913	22157	235.6	220.2	227.2	228.6	199.3	230,	195.2	209.1	230	228.6	232.6	230	201	228.6	200.7	192.3	220.3	214.7	195.1	179.7	147.9
THE T	a a a a a a a a a a a a a a a a a a a	289.4	29212	306.2	272.3	279,7	276.9	280.7	24950	274.8	272.4	278,8	258.8	278.8	269.8	265.4	228	263.0	270.6	270.5	266.4	275.2	267.8	267.8	~	Land	260.7	263.8	258	244	231.4	196,9
238.8		243	2842	907.8.	289.4	310.6	295.1	29417	2947	298.9	305.9	318.7	297/1	orex o	293.5	285.9	284.5	286	295.8	304.2	5js.3	919.7	298.6	290.2	285	250,4	287.4	390	3 1 110	305.9	2818	210.5
329.7	365	368.1	376	365.3	365.3	415.9	318.4	317.5	3025	322.6	328.9	369.5	340.9	336.3	321.3	309.6	307	309.8	317.1	327.9	341.9	340.5	322.3	3162.9	300.4	304.2	310.1	325.1	359.1	336.3	315.3	266.4
279.3	297.4	327.3	3314	303.5	276.5	348.9	508.2	294.7	9 <u>5</u> 1	3367	337.6.	943.7	3413	039.5	3.52	322.7	321-3	322.3	329.3	335.2	944.7	343.3	3 <u>53</u> .5	328.5	32.0,9	318.7	322.3	3549	044.7	3419	326.1	276.2
266.8	286.7	318.9	304.9	272.0	228 .	2598	285	317.1	328.9	93k)	337.6	369.5	939.5	336.3	383.4	328.9	325.1	328.5	9.68/H	0348	339.1	340.5.	939 <u>(</u> 5)	380.7	324.1	322.3	326.1	983.6	859.1	334.9	372.3	267.8
287.7	284.9	797	196.5	192.7	180.1	7713	27913	140.3	315/7	318.8	020.6	329.9	329.5	325.1	321.3	318.0	SIRLI	319.5	321.3	322.7	327.9	327.9	321.3	32969	3(8.7	97 <u>9</u> ,9	31413	319.5	0207	325.1	0829	273.4
277.9	30221	and the second		41516 ·	37.41	295		75.18	291.9	297.4	298.9	302.7	392.6	3017	299.9	298.9	390	303/3	30343	3014	304.2	305.5	390	300	293.8	294,4	294.4	295.8	saka	298.8	sácrs	2482
255.5	240.5	200	100.7	514.21	348.3	272.2	200.0	248.1	259.8	263.5	265.4	268.2	268.2	268.2	265.4	269.2	270.5	270.5	267.8	269.1	269.2	270.6	268.4	267.8	267.8	265	259.8	259.4	258	258	2498	204.9
198.2			ĽЧ	29.15	26.18	24.61	14.77	19.87	2234		219.2	22117	228.1	223	2217	223,4	231.8	227.9	223/1	228,1	225.8	225.8	22117	223.4	230	228.1	214.7	211.9	209.1	205.5	193.7	169

Indiana School for the Blind and Visually Impaired and School for the Deaf Campus

Indiana School for the Blind and Visually Impaired and School for the Deaf Campus Thanks to Designing Visually Accessible Spaces (DeVAS), SLD is Lighting Designer for ISBVI and Low Vision Consultant for the Whole Project

What is DeVAS? A set of tools that predict visibility during the end of the model stage

Studies for Mild to Profound Low Vision: RED = Not Visible Green = Predicted Visible Amber = Below Photopic

ROI Hazard Visibility Score (HVS) 1.0 = Very Visible 0.9 = Predicted Visible ~0.7 = Possibly Visible 0.0 = Not Visible

Based on Human Studies

28 -14 .4 in good light 14 inches from eve eve separately with and without opic patients should read thru billoca

For New Workshop Friends:

A VISION PRIMER

Acuity is the measure of the smallest detail which you can see from a given distance

284 шэ X 0 0 in good light 14 inches from eye each eye separately with and without ropic patients should read thru billoca

Acuity is measured in CYCLES PER DEGREE (CPD)

Normal Vision is 20/20 Acuity Ability to discern 30 CPD

874	1	1	+ =
2843		26.1	• #
638 ⋿Ш∃	x00	14 1	
8745 ∃ m ш	0 X 0	10	
	* * *		5 ~
		5 1	2 =
		4	
		3	14 ÷

Reducing Contrast Reduces Acuity

838 =	= =	X					
			X	0			
· Antipit i			÷				
					4		
						10)	

emiter for last's upper sameralasty with and without present, Presiding and Stational and Presiding and Stational Stational Constant or president and the Stational Stational Stational Constant or president and the Stational Stationae Stationae Stationae Stationae Stationae St

Acuity + Contrast = Contrast Sensitivity Function

Reduced Contrast

Low Vision has Reduced Acuity and Contrast Sensitivity.... smaller CPD details become blurred

Normal vision

Low Vision

and a second					
		'			
	4				
				1	
				1	
				1	
			 1		
The second se	1				
				1	
				1	
· · · · · · · · · · · · · · · · · · ·				1	

20/20(20/80)30 cpd(7.5 cpd)

20/20	20/40	20/80
30 cpd		7.5 cpd

20/240 **2.5 cpd** DeVAS Removes image details predicted to be not visible, while leaving intact, details predicted to BE visible.

Filtered by DeVAS to a specified Acuity

DeVAS-Visibility: Automated Visibility Prediction Application

Radiance Rendering + Geometric Data

Ground Truth Edges

DeVAS-Filter Severe Low Vision

Luminance Boundaries: Canny Edges

DeVAS-Visibility: Automated Visibility Prediction Application

RED edges predicted **NOT** to be **visible Green** edges predicted **visible** for Severe LV

Lighthouse, Miami

Iterative study to improve visibility using ROI & HVS.

Visible leading edge

Is this leading edge visible?

Refining the Region Of Interest.

DeVAS tools use Luminance to Predict Visibility. ... to assist in designing what we need to see

Designing by surface contrasts and illumination misses this visual hazard Interior Designer and Lighting Designer both followed recommended practices To avoid the hazard on the right we need to implement tools like DeVAS

DeVAS WORKS!

Optical Society: CPD Blur approach

Quantitative Approach

William B. Thompson^a, Robert A. Shakespeare^b, Siyun Liu^c, Sarah H. Creem-Regehr^d, Daniel J. Kersten^c, and Gordon E. Legge^c

^aSchool of Computing, University of Utah, Salt Lake City, Utah, USA; ^bDepartment of Theatre, Drama, and Contemporary Dance, Lighting Design, Indiana University, Bloomington, Indiana, USA; ^cDepartment of Psychology, University of Minnesota, Minneapolis, Minnesota, USA; ^dDepartment of Psychology, University of Utah, Utah, USA

Additional Extended Validation Confirmation

Validating a model of architectural hazard visibility with low-vision observers

Siyun Liu 🔤, Yichen Liu, Daniel J. Kersten, Robert A. Shakespeare, William B. Thompson, Gordon E. Legge

Published: November 22, 2021 • https://doi.org/10.1371/journal.pone.0260267

Bill Thompson, Professor, School of Computing, U of Utah A core DeVA member, wrote the code for DeVAS Tools In 2019 Bill worked with Greg to streamline Radiance-DeVAS Greg developed a layered image to simplify data handling The work was unable to be implemented Bill died spring of this year https://github.com/visual-accessibility/DeVAS-filter
Workflow can be simplified... seeks a developer
Further research : Add impact of Glare on Visibility Prediction

Extend into Mesopic and Scotopic Regions
Calibrate HVS for visibility benchmarks

Members of the research team are available for inquiries

DEVA-VISIBILITY(1)

General Commands Manual

DEVA-VISIBILITY(1)

NAME

deva-visibility – estimate locations of potential low-vision hazards

SYNOPSIS

deva-visibility *preset-option* [*options*] {*input.hdr* | –} *coordinates xyz.txt dist.txt nor.txt simulated-view.hdr hazards.png*

or

deva-visibility [options] acuity contrast {input.hdr | -} coordinates xyz.txt dist.txt nor.txt simulated-view.hdr hazards.png

DESCRIPTION

Extends functionality of **deva-filter** to provide estimates of likely low-vision hazards, defined as geometric

1977 Pedestrian Bridge, Waterloo, Iowa. As Was 2020.

1977 Pedestrian Bridge, Waterloo, Iowa. : Hand Drafted

576' - 176m Long, 12' -3.7m wide with 2 Viewing Nodes

From Elevations determined the arc had a 10,059 ft

Mullions are 4.7' o.c. Total of 122 sections across the arc

Each section is .026799 degrees of the arc

Modelled 2 sections, with Translucent top panels And began preliminary lighting studies and tuning the TRANS canopy

It was straight forward to array and locate the bridge single sections copying the single intensity from the ies2rad output

!ies2rad... -m .9... -o whitelight xxx.ies

!xform... locate on arc end... -a 122 -rx .026799 whitelight.rad

-a 122 number of instances
-rx .026799 degrees on arc between sections

White Light is Easy, all at same intensity, but I needed control of each luminaire

But how do I place individual instances with unique intensities?

Part of a spreadsheet for luminaires on the Right side with **r** b color mix

	A	В	С	D	E	F	G	Н	I
1	!ies2rad -df -t default -m	0.9	-с	1.0	0.0	0.0	-0	xlights/R0	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
2	!ies2rad -df -t default -m	0.9	-C	0.5	0.5	0.5	-0	xlights/R1	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
3	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R2	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
4	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R3	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
5	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R4	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
6	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R5	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
7	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R6	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
8	!ies2rad -df -t default -m	0.9	-C	1.0	0.0	0.0	-0	xlights/R7	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
9	!ies2rad -df -t default -m	0.9	-C	1.0	0.0	0.0	-0	xlights/R8	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
10	!ies2rad -df -t default -m	0.9	-C	1.0	0.0	0.0	-0	xlights/R9	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
11	!ies2rad -df -t default -m	0.9	-C	1.0	0.0	0.0	-0	xlights/R10	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
12	!ies2rad -df -t default -m	0.9	-C	1.0	0.0	0.0	-0	xlights/R11	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
13	!ies2rad -df -t default -m	0.9	-C	0.5	0.5	0.5	-0	xlights/R12	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
14	!ies2rad -df -t default -m	0.9	-C	0.5	0.5	0.5	-0	xlights/R13	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
15	!ies2rad -df -t default -m	0.9	-C	0.5	0.5	0.5	-0	xlights/R14	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
16	!ies2rad -df -t default -m	0.9	-C	0.5	0.5	0.5	-0	xlights/R15	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
17	!ies2rad -df -t default -m	0.9	-C	0.5	0.5	0.5	-0	xlights/R16	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
18	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R17	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
19	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R18	lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies
20	!ies2rad -df -t default -m	0.9	-C	0.0	0.0	1.0	-0	xlights/R19	<pre>lights/LOG-100_277-24-RGB-35x35-DMX_RDM_LOGRD.ies</pre>

xform –i to the rescue

The luminaire was aimed then tilted and located in section 0 of the bridge arc

-i stepped through each 0.026799 degrees of arc locating each

individually controlled luminaire. BRILLIANT! (no Math!)

	A	В	С	D	E	F	G	Н	1	J	K	L	Μ	Ν	0	Р	Q	R
1	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) <mark>-i</mark>	0	-rx	-0.02679	99 ./xlights/R0.rad
2	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	1	-rx	-0.02679	99 ./xlights/R1.rad
3	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	2	-rx	-0.02679	99 ./xlights/R2.rad
4	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) <mark>-i</mark>	3	-rx	-0.02679	99 ./xlights/R3.rad
5	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) <mark>-i</mark>	4	-rx	-0.02679	99 ./xlights/R4.rad
6	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	5	-rx	-0.02679	99 ./xlights/R5.rad
7	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	6	-rx	-0.02679	99 ./xlights/R6.rad
8	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	7	-rx	-0.02679	99 ./xlights/R7.rad
9	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	8	-rx	-0.02679	99 ./xlights/R8.rad
10	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	9	-rx	-0.02679	99 ./xlights/R9.rad
11	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	10	-rx	-0.02679	99 ./xlights/R10.rad
12	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	11	-rx	-0.02679	99 ./xlights/R11.rad
13	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	12	-rx	-0.02679	99 ./xlights/R12.rad
14	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) -i	13	-rx	-0.02679	99 <mark>./xlights/R13.rad</mark>
15	!xform	-ry	112	-t	5.0064	0	0517	-rx	1.638018	96 -t	0	-286.8	10055.4890) <mark>-i</mark>	14	-rx	-0.02679	99 ./xlights/R14.rad
			_															
05	517	-rx	1.	638	801896	-t	0	-286	.8 1	.0055	5.48	90 <mark>-i</mark>	0	-rx		-0.02	.6799 <mark>.</mark>	/xlights/R0.rad
05	517	-rx	1.	638	301896	-t	0	-286	.8 1	.0055	5.48	90 <mark>-</mark> i	1	-rx		-0.02	.6799 .	/xlights/R1.rad

What about the white water? Needed to show the client some possibilities...

Radiance Model with mapped images

Radiance Model with mapped images

GREG MAGIC!

!ra_tiff -r sample-waterDS3.tif \
| pcomb -x 250 -y 200 -e 'lo=0.9*ri(1)' - \
| pvalue -h -H -b -d \
| gensurf water rapids 's*100' 't*80' - 249 199 -s -o \
| obj2mesh > rapids2.rtm

lo=0.9*ri(1) 0.9= height of mesh based on red value of pixel

YES!!!

Tested various photometry and aiming

Tested color effects to share with clients...

The real deal.....

21st International Radiance Workshop Innsbruck, Austria

THANK YOU Talk to me if interested in extending DeVAS

by Rob Shakespeare Shakespeare Lighting Design LLC Rob@ShakespeareLighting.com