Validation of DVIZ simulations with BSDFs against Radiance

(and hints why the dew point temperature and patch sizes can be important in gendaymtx)

David Geisler-Moroder, University of Innsbruck Lukas Prost, Luxion Inc. Nicolas Roy, VELUX A/S

21st International Radiance Workshop August 28-31, 2023, Innsbruck, Austria

It's all about BSDFs

"Photometry of façade systems" (Complex Fenestration Systems – CFS)

- Basis for including daylighting and shading systems in simulations
 - Lighting simulations (sun & skylight)
 - Energy simulations (angular dependent solar gains)
- Analogon to luminous intensity distributions for daylighting systems
 - BSDF: scattering
 - BRDF: reflection
 - BTDF: transmission
 - BSDF = BRDF + BTDF
- Distribution on the interior side as function of the exterior situation
- Already implemented in various tools

BSDFs in DViz

Loading and sampling:

Radiance: bsdf.h and bsdf.c

Scenes

Facade Room

- Simple shoebox model
- Window on one side
- Systems (BSDF): clear glass, redirecting lamella system
- Sensor grids on floor, workplane, and ceiling
- 3-PM simulation

Sun Tunnel Room

- Simple shoebox model
- Rectangular light pipe
- Systems: clear glass, (diffuser BSDFs to come)
- Sensor grids on floor, workplane, and sun tunnel outlet
- x-PM simulation

BSDF: Clear glass

BSDF: Redirecting blinds

Relative difference [%]

Relative difference [%]

DViz

Scene

Geometry

Imported	Modelled in DViz

Light Sources

Sky	Sun
Environment Light – 360x180	"Directional" Light
, and the second s	0.5° or 11° opening angle

Sensor Point

Plane 4x4 cm
Intercepts" photons
nteracts with primary rays
Invisible" to other rays

Tregenza patches (CIE 108-1994)

- subdivision of hemisphere into 145 patches
- approx. equal solid angles for each patch
- 8 θ ranges (from zenith):
 {0° 12° 24° 36° 48° 60° 72° 84°} +/- 6°
- φ subdivisions per θ range: {1, 6, 12, 18, 24, 24, 30, 30}
- average solid angle $2\pi/145 = 0.0433$ sr (~2 x 6.73°)

Implementation options

- Full patches (backward raytracing)
- 11° aperture angle (measurement device)
- Center positions mimicking the sun (0.5° aperture) (forward raytracing)

Radiance implementation

- Full patches *Radiance default* (backward raytracing)
- 11° aperture angle *adapted 5PM option* (measurement device)
- Center positions mimicking the sun (0.5° aperture) – adapted 5PM option (forward raytracing)

gendaymtx.c (v 2.39, adapted)

```
case '5':
                    /* 5-phase calculation */
   nsuns = 1;
    fixed sun sa = PI/360.*atof(argv[++i]);
   if (fixed sun sa \leq 0) {
        fprintf(stderr, "%s: missing solar disk size argument for '-5' option\n",
                progname);
       exit(1);
    fixed sun sa *= fixed sun sa*PI;
   break;
case 'x':
                    /* hack for sky patch solid angle -- DGM 01.05.2023*/
    fixed sky sa = atof(argv[++i]);
   if (fixed sky sa <= 0) {
        fprintf(stderr, "%s: missing patch size argument for '-x' option\n",
                progname);
        exit(1);
   fixed sky sa = 2.*PI*(1. - cos(PI/360.*fixed sky sa));
   break;
```

```
rh pazi[nskypatch-1] = 0.;
if (fixed sky sa > 0) /* hack for fixed sky patch size -- DGM 01.05.2023 */
    rh dom[nskypatch-1] = fixed sky sa;
else
    rh dom[nskypatch-1] = 2.*PI*(1. - cos(alpha*.5));
p = 1;
                    /* "normal" patches */
for (i = 0; i < NROW*rhsubdiv; i++) {</pre>
    const float ralt = alpha*(i + .5);
    const int ninrow = tnaz[i/rhsubdiv]*rhsubdiv;
    const float dom = 2.*PI*(sin(alpha*(i+1)) - sin(alpha*i)) /
                    (double) ninrow;
    for (j = 0; j < ninrow; j++) {
        rh palt[p] = ralt;
        rh_pazi[p] = 2.*PI * j / (double)ninrow;
       if (fixed sky sa > 0) /* hack for fixed sky patch size -- DGM 01.05.2023 */
            rh dom[p++] = fixed sky sa;
        else
            rh dom[p++] = dom;
```

return nskypatch;

Radiance implementation

- Full patches *Radiance default* (backward raytracing)
- 11° aperture angle *adapted 5PM option* (measurement device)
- Center positions mimicking the sun (0.5° aperture) – adapted 5PM option (forward raytracing)

Scene

Test room for BSDF validation: "Facade Empty"

Renderings without facade system for direct view to the sky

Test room for BSDF validation: "Facade Empty"

Renderings without facade system for direct view to the sky

(i) Tregenza / Reinhart patches (MF1)(ii) 11° patches

0.533° suns

(iii)

Test room for BSDF validation: "Facade Empty"

Renderings without facade system for direct view to the sky

(i) Tregenza / Reinhart patches (MF1)

(iii) 0.533° suns

Test room for BSDF validation: "Facade Empty"

Renderings without facade system for direct view to the sky

(i) Tregenza / Reinhart patches (MF1)

(iii) 0.533° suns

Test room for BSDF validation: "Facade Empty"

Renderings without facade system for direct view to the sky

- (i) Tregenza / Reinhart patches (MF1)
- (ii) 11° patches
- (iii) 0.533° suns

Views from sensor points

Radiance:Reinhart MF:1DVIZ:11° patches

BSDF: Clear glass

BSDF: Redirecting blinds

Radiance:11° patchesDVIZ:11° patches

BSDF: Clear glass

BSDF: Redirecting blinds

Radiance:0.5° patchesDVIZ:0.5° patches

BSDF: Clear glass

BSDF: Redirecting blinds

Methodology

4 Component Method

Daylight Coefficients

Direct Sky Shadow rays	Direct Sun Shadow rays	Indirect Sky Photon Mapping	Indirect Sun Photon Mapping
Luminance			
Sky Luminance gendaymtx		Sun Normal Illuminance Perez LE [1] with 3h sma DPT	

[1] Perez, Richard, et al. "Modeling daylight availability and irradiance components from direct and global irradiance." Solar energy 44.5 (1990): 271-289.

Perez Sky

Luminous efficacy model:

• R. Perez, P. Ineichen, R. Seals, J. Michalsky and R. Stewart. Modeling Daylight Availability and Irradiance Components from Direct and Global Irradiance. Solar Energy, Vol. 44, pp. 271-289, 1990.

Luminance distribution model:

• R. Perez, R. Seals and J. Michalsky. All-weather model for sky luminance distribution – Preliminary configuration and validation. Solar Energy, Vol. 50, Issue 3, pp. 235-245, 1993.

and

• R. Perez, R. Seals and J. Michalsky. Erratum to All-Weather Model for Sky Luminance Distribution. Solar Energy, Vol. 51, Issue 5, p. 423, 1993.

Perez Sky

Luminous efficacy model:

• R. Perez, P. Ineichen, R. Seals, J. Michalsky and R. Stewart. Modeling Daylight Availability and Irradiance Components from Direct and Global Irradiance. Solar Energy, Vol. 44, pp. 271-289, 1990.

2.2.2 *Models structure*. All the models presented here have a common structure represented by the following equation:

Y = X * F (insolation condition,

receptor/sun geometry) (4)

 $F(\epsilon,\Delta,Z,W) = a_i(\epsilon) + b_i(\epsilon)f(W)$

 $+ c_i(\epsilon)g(Z) + d_i(\epsilon)h(\Delta)$ (5)

Y ... modeled quantity

- X ... quantity depending on three basic inputs
 - direct irradiance
 - global irradiance
 - three-hourly dew point temperature

F ... transfer function

Perez Sky

Luminous efficacy model:

• R. Perez, P. Ineichen, R. Seals, J. Michalsky and R. Stewart. Modeling Daylight Availability and Irradiance Components from Direct and Global Irradiance. Solar Energy, Vol. 44, pp. 271-289, 1990.

gendaymtx & gendaylit

gendaymtx.c (v 2.39)

double dew_point = 11.0; /* Surface dew point temperature (deg. C) */

```
/* Calculate atmospheric precipitable water content */
apwc = CalcPrecipWater(dew_point);
```

gendaylit (v 2.21)

Climate data: DNK_Copenhagen.061800_IWEC.epw gendaymtx -A -m 1

Dew Point Temperature

gendaymtx & epw2wea

gendaymtx.c (v 2.39, adapted)

/* process each time step in tape */
while (scanf("%d %d %lf %lf %lf %lf %lf\n", &mo, &da, &hr, &dir, &dif, &dew) == 6) {
 dew point = dew; /* assign dew point from wea file instead of fixed value */

epw2wea.c (v 2.3, adapted)

while(EOF != fscanf(EPW_FILE, "%d, %d, %d, %d", &year, &month, &day, &hour_in)){
 fprintf(WEA_FILE, "%d %d %.3f ",month,day,hour_in*1.0-minute*(0.5/60));

 /* fscanf(EPW_FILE, ",%f", &dummy_float); */
 fscanf(EPW_FILE, ",%f", &dew_pt);
 dew_pt_avg3 = (dew_pt + dew_pt_m1 + dew_pt_m2) / 3.0;
 dew_pt_m2 = dew_pt_m1;
 dew_pt_m1 = dew_pt;

 ferenf(PPT_EVER_#.%f, &dimensional_foliations and foliations and foliations

fscanf(EPW_FILE,",%f,%f",&dir_norm_rad, &dif_or_rad);
fprintf(WEA_FILE,"%.0f %.0f %.1f", dir_norm_rad, dif_or_rad, dew_pt_avg3);

Dew Point Temperature

World map: https://en.wikipedia.org/wiki/File:Robinson projection SW.jpg

Dew Point Temperature

World map: https://en.wikipedia.org/wiki/File:Robinson_projection_SW.jpg

Climate data: DNK_Copenhagen.061800_IWEC.epw Average sky: gendaymtx -A -m 1

Climate data: CAN_NU_Resolute.719240_CWEC.epw Average sky: gendaymtx -A -m 1

Climate data: SGP_Singapore.486980_IWEC.epw Average sky: gendaymtx -A -m 1

Climate data: GHA_Accra.654720_SWERA.epw Average sky: gendaymtx -A -m 1

Impact on simulation

Test room

Simple shoebox model South-facing façade Window with clear glass (Klems BSDF) Sensor grid on floor level 3-PM simulation

Evaluation of average illuminance on sensor grid over the course of the year

Relative difference

Climate data: DNK_Copenhagen.061800_IWEC.epw Sky matrix: gendaymtx -m 1 -c 1 1 1

Relative difference [%]

7500 10000 12500 15000 17500

Average illuminance [lx]

Min = -5.8% Max = +4.0% Median = +0.1%

Climate data: CAN_NU_Resolute.719240_CWEC.epw Sky matrix: gendaymtx -m 1 -c 1 1 1

7500 10000 12500 15000 17500 20000

Average illuminance [lx]

Climate data: SGP_Singapore.486980_IWEC.epw Sky matrix: gendaymtx -m 1 -c 1 1 1

Td = 11°C (default)

Td = 3h avg. from EPW [-/+ %]

Average illuminance on sensor grid "floor" Td 11°C: mean = 19661 lx Td from EPW: mean = 2038 lx

> Relative difference Min = -2.0% Max = +15.0% Median = +2.6%

Relative difference [%]

00 3000 4000 5000 6000 7000 8000 -20 -16 Average illuminance [Ix]

Climate data: GHA_Accra.654720_SWERA.epw Sky matrix: gendaymtx -m 1 -c 1 1 1

Td = 11°C (default)

Td = 3h avg. from EPW [-/+ %]

Average illuminance on sensor grid "floor" Td 11°C: mean = 2351 lx Td from EPW: mean = 2451 lx

Relative difference [%]

Average illuminance [lx]

Average illuminance on floor grid

Sun Tunnel Room

- Simple shoebox model
- Rectangular light pipe
- Systems: clear glass, (diffuser BSDFs to come)
- Sensor grids on floor, workplane, and sun tunnel outlet
- x-PM simulation

Average illuminance on floor grid

Radiance:Reinhart MF:1DVIZ:11° patchesDew point settings as in DViz

Sun tunnel, clear glass

Average illuminance on floor grid

Radiance:11° patchesDVIZ:11° patchesDew point settings as in DViz

Sun tunnel, clear glass

Average illuminance on floor grid

Radiance:0.5° patchesDVIZ:0.5° patchesDew point settings as in DViz

Sun tunnel, clear glass

Klems' view to the sky

Klems' view to the sky

Summer solstice in Copenhagen

- latitude 55.6°
- -> max. sun altitude: 57.9°

Next steps

- Resolve issue with underestimation of transmission in some cases
- Test sun tunnel with BSDF materials at entrance and / or outlet
- Documentation
- Implementation of dew point temperature in epw2wea & gendaymtx?

Thank you for listening!

Questions?

David Geisler-Moroder University of Innsbruck <u>david.geisler-moroder@uibk.ac.at</u>

Lukas Prost

Luxion Inc.

lukas.prost@luxion.com

Nicolas Roy VELUX A/S

nicolas.roy@velux.com