Fachgebiet
gebäude*
systeme
technik

The effect of multichannel spectral simulation on the evaluation of lighting energy demand in an office room

Margarita Alwalidi, M.Sc.

Prof. Dr.-Ing. Sabine Hoffmann

Chair of Built Environment, RPTU Kaiserslautern, Germany

30.08.2023, Innsbruck

Agenda

- 1. Background: multichannel spectral simulations
- 2. Generation of spectral profile for the sky
- 3. Annual results for daylighting: spectral simulation with 3, 9, 27 and 81-channels
- 4. Electric lighting with continuous and discontinuous spectrum
- 5. Results: electrical lighting demand
- 6. Conclusion and outlook

Background Consideration of the spectral composition of light

- Lighting enables visual tasks to be performed efficiently and accurately.
- Standards (e.g. DIN EN 12464-1): minimum illuminance levels, balanced luminance distribution, glare protection measures, etc.

Fachgebiet

gebäude*

systeme technik

The spectral composition has non-visual effects. It:

- is crucial for health and well-being.
- influences moods, emotions and also attention.

Background Consideration of the spectral composition of light

- Lighting enables visual tasks to be performed efficiently and accurately.
- Standards (e.g. DIN EN 12464-1): minimum illuminance levels, balanced luminance distribution, glare protection measures, etc.

The spectral composition has non-visual effects

- crucial for health and well-being.
- influences moods, emotions and also attention.

Non-visual metrics:

- thresholds for metrics such as Circadian Stimulus (CS) and Equivalent Melanopic Lux (EML) have been previously proposed.
- discoveries in this field will keep on coming.
- one thing is certain: light should be modelled spectrally, so that it can be converted into spectral metrics.

gebäude*

^{Fachgebiet} gebäude* systeme technik

Background

N-channel algorithm and spectral simulation tools

- The N-step algorithm was introduced in the field of psychophysics and color computation to achieve physical accuracy in lighting simulations and renderings in Radiance.
- The algorithm fragments the visible spectrum into N channels.
- If N is nine channels → three simulations will be performed, one in each of the discrete spectral wavelength bands.
- Two Radiance-derived tools implement the N-step algorithm by increasing the number of channels beyond three:
 - LARK (1.0 & 2.0): 3 and 9 channels
 - Adaptive Lighting For Alertness (ALFA): 81 channels

Spectral power distribution of D65 illuminant and discretization of the spectrum into three, nine, 27 and 81 channels.

Source: Ruppertsberg A. & Bloj M.; 2006, Yang J. & Maloney L.; 2001, Hall R.; 2012.

Background

Validation of a multichannel spectral simulation tool

Three lighting scenarios with 3, 9, 27 and 81 channels in a point-in-time simulation:

- > Diffuse daylight
- > Electric light
- > Combination of daylight and electric light

Integral irradiance from 380 nm to 780 nm:

Improvement of the mean absolute percentage error (MAPE) by 13.9% to 33.9% for electric and combined light with 9 channel simulation.

For continuous daylight, minimal improvement that is not justified by increase of the simulation time.

 \rightarrow How significant is the improvement in the evaluation of lighting energy demand?

Modeled box with 14 (daylight) and 17 (electric light) measurement points.

Irradiance predictions of N-channels alongside measured irradiance.

Source: Alwalidi M, Ganji Kheybari A, Subramaniam S, Hoffmann S. Development of a multichannel spectral simulation tool and experimental validation with different lighting scenarios. Lighting Research & Technology. 2023;0(0).

Determination of sky type based on sky clearness (ϵ):

- Clear sky: ε > 4.5
- Intermediate sky: $1.065 \le \epsilon \le 4.5$
- Overcast sky: ε < 1.065

🔚 KL_8.0_30.0_12.5.sky 🔀

```
1 # C:\Radiance\bin\gendaylit 8.0 30.0 12.5 -g 0.180 -m -15 -a 49.43 -o 7.75 -W 317.0 354.0
2 # Local solar time: 10.97
3 # Solar altitude and azimuth: 47.0 -22.8
4 # epsilon, delta, atmospheric precipitable water content : 1.6225 0.3603 2.0000
5 void light solar
7 0
8 0
9 3 2.502e+06 2.502e+06 2.502e+06
10
solar source sun
12 0
13 0
14 4 0.264241 -0.628057 0.731930 0.533000
15
void brightfunc skyfunc
17 2 skybright perezlum.cal
18 0
19 10 3.930e+01 1.915e+01 -0.951257 -1.079485 11.257745 -3.056593 0.178367 0.264241 -0.628057 0
20
```

Luminance and CCT correlation for clear sky:

Luminance and CCT correlation for overcast sky:

CCT = 6145 K

Intermediate sky?

Overcast if sky patch has only diffuse contribution.

Source: Diakite-Kortlever A, Knoop M. Forecast accuracy of existing luminance-related spectral sky models and their practical implications for the assessment of the non-image-forming effectiveness of daylight. Lighting Research & Technology. 2021. Wienold J, Diakite A, Knoop M, Andersen M. Making simulations more colorful: Extension of gendaylit to create a colored sky. 17th International Radiance Workshop, Loughborough, UK. 2018.

Mannheim, Germany

The effect of multichannel spectral simulation on the evaluation of lighting energy demand in an office room | Margarita Alwalidi | Radiance Workshop 2023, Innsbruck

Fachgebiet

gebäude*

Mannheim, Germany

The effect of multichannel spectral simulation on the evaluation of lighting energy demand in an office room | Margarita Alwalidi | Radiance Workshop 2023, Innsbruck

Fachgebiet

gebäude*

systeme technik

9

Matrix with 145 Reinhart patch subdivision via gendaymtx

Total hours from 08:30 to 18:30: 4,015 Total hours if solar altitude is above 10°: 3,265

Source: Diakite-Kortlever A, Knoop M. Forecast accuracy of existing luminance-related spectral sky models and their practical implications for the assessment of the non-image-forming effectiveness of daylight. Lighting Research & Technology. 2021.

Fachgebiet

gebäude*

Venetian blinds removed from the original model

Source: https://web.mit.edu/sustainabledesignlab/projects/ReferenceOffice/index.html

J. Alstan Jakubiec (2022). Data-driven selection of typical opaque material reflectances for lighting simulation, LEUKOS, DOI: 10.1080/15502724.2022.2100788

The effect of multichannel spectral simulation on the evaluation of lighting energy demand in an office room | Margarita Alwalidi | Radiance Workshop 2023, Innsbruck

Reference office room

Geometry:

MIT reference office room

Location:

Mannheim, Germany

Surface	Material	Reflectance	Transmittance
Ceiling	White paint	80 %	
Walls	Yellow paint	50 %	
Floor	Wooden parquet	20 %	
Glazing	Double pane low E		65 %
Ground	Concrete	20 %	

- Floor area: 29.5 m²
- Total workplaces: 6
- Total workzones: 3

Fachgebiet

gebäude*

View-specific spectral profile

1. Generate hourly HDR images \rightarrow Use of coloured sky as input for N-channels.

Source: Maskarenj M, Deroisy B, Altomonte S, A new tool and workflow for the simulation of the non-image forming effects of light, Energy and Buildings, 2022.

The effect of multichannel spectral simulation on the evaluation of lighting energy demand in an office room | Margarita Alwalidi | Radiance Workshop 2023, Innsbruck

Fachgebiet

gebäude*

Example of the simulation with 9-channels

- For each timestep, adjust the -c option of the genskyvec using the respective part of the SPD for each of the three simulation runs. (Input: dome or view-specific SPD scaled for energy balance).
- 2. Generate **three** octree files for the material definitions for each discrete wavelength band.
- 3. Generate **three matrices** for each octree file *using rfluxmtx*
- 4. Multiply the **three** DC matrices are against **three** lists of average patch radiances (from step 1) using *dctimestep*

Total simulated hours: 3,265

13

Spectral power distribution of D65 illuminant.

Fachgebiet

gebäude*

Postprocessing steps

Example of the simulation with 9-channels

Example on 01.01 at 11:30

- Direct irradiance: O W/m²
- Diffuse irradiance: 68.0 W/m²
- Photopic illuminance at the desk level (0.80 m horizontal): 795.8 lx
- Melanopic equivalent daylight illuminance at the eye level (1.20 m vertical): 353.9 lx

Position 1 in reference office room.

Fachgebiet

gebäude*

Melanopic equivalent daylight illuminance and photopic illuminance

Fachgebiet gebäude* systeme technik

16

Melanopic equivalent daylight illuminance and photopic illuminance

Fachgebiet

gebäude*

Photopic illuminance and MEDI: underlit hours for position 1

maintain appropriate level of illuminance in each zone

Tube dimensions: 0.052 m x 1.404 m

Electric light

Selected luminaire

Energy consumption: 34 W

 Appropriate level of illuminance determined by the sensor with the lowest values in each zone

VA: 0°

109

1,583

1,267

950

633

317

0.00

317

633

950

1,267 1,583 1,900

- 0° H
 - 90° H

180° 170° 160° 150°

140°

130°

120°

110°

100°

90°

80°

70°

60°

409

gebäude* systeme technik

Electric light Spectral power distribution

19

- Fachgebiet gebäude* systeme technik
- **LED 4250 K** Fluorescent 13650 K Energy consumption: 34 W **Relative SPD of the** 1 Relative spectral power distribution Tube dimensions: 0.052 m x 1.404 m 0.8 luminaires 0.6 Mounting height: 2.60 m 0.4 0.2 Ω 380 480 580 680 780 380 480 580 680 780 SPD defined in the ies2rad –c option Wavelength (nm) Wavelength (nm) 1 Relative spectral power distribution 70 00 00 80 **Relative SPD at the** Relative spectral power 0.8 eye level distribution 0.6 0.4 0.2 0 0 380 580 680 780 580 480 380 480 680 780 Wavelength (nm) Wavelength (nm) -3 channels -----9 channels 3 channels — 9 channels -27 channels ----- 81 channels

Results Annual energy demand

gebäude* systeme technik

LED 4250 K

Channels	Annual energy demand (kWh/m²a)	Deviation from 81 channels (%)
3	5.85	7.70
9	6.25	1.34
27	6.32	0.31
81	6.33	0.00

Fluorescent 13650 K

Channels	Annual energy demand (kWh/m²a)	Deviation from 81 channels (%)
3	3.75	14.47
9	4.19	4.76
27	4.30	2.09
81	4.39	0.00

The effect of multichannel spectral simulation on the evaluation of lighting energy demand in an office room | Margarita Alwalidi | Radiance Workshop 2023, Innsbruck

Conclusion and outlook

- How significant is the improvement in the evaluation of lighting energy demand?
 - Approximately 15% more lighting energy is needed with 81 channels the investigated spectra in comparison to three channels
 - Nine-channel simulation maintained deviation below 5 % for both spectra in comparison to the 81 channels
- Multichannel spectral simulations are recommended for buildings with high lighting energy demand

Future steps:

Trade off between accuracy and simulation time

- Simulation time: sequential or parallel simulation of the channels
- Simulation time could be significantly reduced if sky color could be defined only once for multiple timesteps (matrix simulation)

Thank you!

Margarita Alwalidi, M.Sc.

Mail: margarita.alwalidi@rptu.de Internet: www.bauing.uni-kl.de/gst www.livinglab-smartofficespace.de

Example on April 22 at 18:30