

Thermo-optical properties of 3D-printed facades: capturing material and geometrical complexity across scales

21st International Radiance Workshop

29 | 08 | 2023

Motivation

Role of facades in decarbonisation

Building life-cycle embodied emissions

Adapted from "Net-zero buildings Where do we stand? (2021), Arup and WBCSD

Motivation

Role of facades in decarbonisation

Research Background

Large-scale polymer 3DP

- Mass customization: climate-specific design with tailored properties
- Geometrical complexity: performance integration and multi-functionality
- Additive process: minimal material waste Monomaterial: easy recycling

Research Project

Integrated 3D Printing Facade

- Relationship between performance, geometry and fabrication
- Focus on thermal and solar aspects as key functional requirements
- Modelling approaches for performance assessment and design integration

Methods

Research

A Multiscale approach

Architecture and Building Systems

Material Scale

Fabricated with same material and printer

© Matthias Leschok

Material Scale

Fabricated with same material and printer

A / Architecture and Building Systems

Material Scale

Fabrication

Morphology

Piccioni et al., 2023. https://doi.org/10.1002/admt.202201200

Material Scale

Optical characterisation through BSDF

Goniophotometer Laboratory, Research Group Envelopes and Solar Energy, HSLU © Lars Grobe

- Scattered light transmission due to 3DP layers, depending on their orientation
- Angle-dependent behavior depending on layer cross sectional dimensions

Piccioni et al., 2023. https://doi.org/10.1002/admt.202201200

Material Scale

Optical characterisation through BSDF

• Can we describe this behavior with simulations?

• How can we use the material description for performance assessment at the component scale?

• What happens in parts with multiple 3DP surfaces? How do we model optical interactions?

Piccioni et al., 2023. https://doi.org/10.1002/admt.202201200

Material Scale

pabopto2BSDF vs genBSDF

- Geometry modelling in Rhino-Grasshopper (MSH2RAD)
- Dielectric material void dielectric PETG 0 0 5 .9 .9 .9 1.57 0
- genBSDF parameters +f +b -c 3000 Klems resolution

Material Scale

pabopto2BSDF vs genBSDF

National Centre of Competence in Research Digital Fabrication Architecture and Building Systems

S

Material Scale

Gravity-induced deformation

Fabrication-induced microstructures

3D-scanned geometry as Radiance input

Weber et al., 2023. <u>https://doi.org/10.1016/j.buildenv.2020.106957</u>

Component Scale

A / Architecture and Building Systems

National Centre of Competence in Research Digital Fabrication

0

Component Scale

			ID	Name	Mode	Thick
-	Shade 1	**	00006	3DP Flat Sheet_Horizontal		6.0
	Gap 1	**	1	Air		0.0
-	Glass 2	**	00000	Dummy Glass		0.1
	Gap 2	**	1	Air		0.0
-	Shade 3	**	00007	3DP Infill_Vertical_Cavities		76.0
	Gap 3	**	1	Air		0.0
-	Glass 4	**	00000	Dummy Glass		0.1
	Gap 4	**	1	Air		0.0
-	Shade 5	**	00006	3DP Flat Sheet_Horizontal		6.0

National Centre of Competence in Research **Digital Fabrication**

Architecture A / and Building Systems S

Approach 1

Pros: Simple model generation Fast runtime

Cons:

Missing full component description (thermal properties)

Approach 2

Pros: Full component description in WINDOW (SHGC, U-value)

Cons:

Complex model generation Long runtime per layer Convoluted workflow

Approach 3

Pros:

Fast runtime per layer Full component description in WINDOW (SHGC, U-value)

Cons: Convoluted workflow

A / Architecture and Building Systems

Component Scale

Solar-thermal characterisation

- Description of angle-dependent SHGC
- Integrating knowledge about thermal properties
- Validation of Radiance + Window modelling approach

3DP façade sample fabricated at the Robotic Fabrication Lab in ETH Zürich

Component Scale

Solar-thermal characterisation

A / Architecture and Building Systems

Component Scale

Solar-thermal characterisation

A / Architecture and Building Systems

Component Scale

Thermal characterisation

- Complex geometries cannot be treated using ISO15099
- Measurement of u-value using the HB-HFM method
- Experimentally validated simulation model of heat transfer effects in 3DP components

Piccioni, Leschok et al., 2023. DOI 10.1088/1755-1315/1196/1/012063

Component Scale

Thermal characterisation

1	<pre><?xml version="1.0" encoding="UTF-8"?></pre>					
2	Created by: genBSDF +f +b +geom centimeter -c 5000 Infill 3DP.rad					
3	WindowElement xmlns="http://windows.lbl.gov" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"					
4	<pre><windowelementtype>System</windowelementtype></pre>					
5	<pre><filetype>BSDF</filetype></pre>					
6	□ □ □					
7						
8	📄 <material></material>					
9	<name>Name</name>					
10	<pre><manufacturer>Manufacturer</manufacturer></pre>					
11	<pre><devicetype>Other</devicetype></pre>					
12	<pre><thickness unit="millimeter">76</thickness></pre>					
13	<width unit="millimeter">1000</width>					
14	<pre><height unit="millimeter">1000</height></pre>					
15	<thermalconductivity>0.27</thermalconductivity>					
16	<pre><emissivityfront>0.9</emissivityfront></pre>					
17	<pre><emissivityback>0.9</emissivityback></pre>					
18	<tir>0</tir>					
19	<pre><permeabilityfactor>0</permeabilityfactor></pre>					
20	<pre>- </pre>					
21	<pre><geometry format="MGF"><mgfblock unit="centimeter">xf -t -50.178500 -50.100000 0</mgfblock></geometry></pre>					
22	# The following was converted from RADIANCE scene input					
0.0						

- Derive effective thermal conductivity for each layer (front, back, infill) and assign it to BSDF.xml
- WINDOW uses these to calculate U-value and the secondary heat flux of the component
- Treat cavities as solid and missing temperaturedependence of convective and radiative fluxes

Piccioni, Leschok et al., 2023. DOI 10.1088/1755-1315/1196/1/012063

A / Architecture and Building Systems

Outlook

Design for the building scale

- Validation and refinement of simulation approach for solar-thermal aspects
- Building-scale simulation of the performance of a 3DP façade in different climates
- Performance-informed design strategies for sitespecific façade components

NCCR Project 1C

Integrated 3D Printing Facade

Valeria Piccioni Architecture and Building Systems

Matthias Leschok Digital Building Technologies

Ina Cheibas Architecture and Digital Fabrication A / Architecture and Building Systems

GRAMAZIO Kohler R_es_{rch}

