Lucerne University of Applied Sciences and Arts

HOCHSCHULE

Canned Sunshine: Precomputed Daylight Coefficients for Climate Based Modelling using Photon Mapping

Roland Schregle

RS SciComp Switzerland

Lars Oliver Grobe, Stephen Wasilewski

RG Envelopes and Solar Energy Lucerne University of Applied Arts and Sciences, Switzerland

roland.schregle@gmail.com

larsoliver.grobe@hslu.ch stephen.wasilewski@hslu.ch

2022 International RADIANCE Workshop 3-5 August, 2022 Toronto, Canada

Overview: Why Precompute Contributions?

- rcontrib calculates geometric transfer terms (coefficients/contributions) between sky and sun positions for climate based daylight modelling.
- No irradiance cache, potentially redundant ray evaluations.
- Slow with shading/redirecting components, data-based BSDFs

Overview: Contribution Photon Map (2015)

- *mkpmap* emits photons from light sources, stores:
 - Flux Φ_p ([W] or [Im], normalised in coefficient mode)
 - Source idx
 - Primary incident direction ψ_p (optional, increases mem footprint)

Overview: Contribution Photon Map (2015)

- **rcontrib** locates N_p photons around sensor pos, accumulates flux Φ_p in N_b bins acc. to primary dir ψ_p
- Contrib $E(\omega_i)$ for bin $i \in [0, N_b 1]$ proportional to photon density:

 $E(\omega_i) \approx \sum_{p=1}^{N_p} \frac{\Phi_p}{\pi r^2} \quad \{ \forall p : \psi_p \in \omega_i \}, \ N_p \gg N_b(!)$

Overview: Contribution Photon Map (2015)

- Pros (vs. rcontrib classic): More efficient with data-based BSDFs; binning flexible, as done in rcontrib
- **Cons:** marginally faster, redundant lookups (very large N_p), needs *huge* photon maps (\geq 1G photons) \rightarrow out-of-core, page from disk

Precomputed Global Photons (~2001)

- *mkpmap* selects subset of photons for precomputation
- Locates N_p nearest photons at precomp. photon pos, evaluates irradiance E from photon density, stores with precomp photon
- *rtrace*/*rtrace*/*rvu* looks up <u>single closest</u> photon to sensor
 → Approximate, but fast (fewer redundant photon lookups)
- Idea: apply same principle to contribution photon map
 → Store vector of binned contribs per precomputed photon

Precomp. photons directly visualised with -ab -1

Precomputed Contribution Photons: Concept

- Precompute contributions, store for selected photons in *mkpmap*
- Locate single closest precomputed photon in rcontrib, accumulate contributions for each modifier
- But... we now store a vector of contributions per photon!

Precomputed Contribution Photons: Data Volume

- Need to store binned contribs *per photon* → HUGE data volume
- Example: 10M precomp. photons, Reinhart MF:4 (2305 bins), 32-bit RGBE encoding → 92.2 Gb contributions on disk!
- Need powerful (lossy) compression → wavelets
- Page contribs from disk in *rcontrib* → only out-of-core supported
- Cache photons and decoded contribs → hide latency of I/O, inv. wavelet transform
- Compact mRGBE encoding for wavelet coeffs (modified, mini...)

Precomputed Contribution Photons: Binning

- *mkpmap* bins photons using Shirley-Chiu disk-to-square mapping
 → 2D matrix ideal domain for wavelet transform
- **Pros:** Photon lookups for large N_p only in precomp
- **Cons:** Binning now "frozen" in photon map
- Binning params passed to *rcontrib* via @optionFile for consistency

Precomputed Contribution Photons: Overview (*mkpmap***)**

Precomputed Contribution Photons: Overview (*rcontrib***)**

Wavelet Transform

- Applications:
 - Wavelet Radiosity [Gortler, 1993]
 - Sph. Wavelets, BSDFs [Schröder 1995, Lalonde 1997, Wu 2019]
 - Image processing, compression [JPEG2000]
 - Fingerprint identification [AFIS, 2010]
- 2D Wavelet transform over Shirley-Chiu square (=matrix)
- Decomposes contribs into:
 - *approximation* coeffs \rightarrow low freq,
 - *detail* coeffs \rightarrow high freq
- Multiple frequency bands → multiresolution analysis
- Finite support → no ringing artefacts, peaks preserved
- Headaches guaranteed!

Wavelet Transform

- Alternating horiz. / vert. passes \rightarrow Decomposition over both axes
- RGB transformed independently → 3-tuple coefficients
- Matrix dimensions $l \times l = N_b$, where l > 3 arbitrary (vs. powers of 2) → Need boundary extension → extra *padding* coefficients

- Wavelet detail coeff range limited → Reduced precision encoding
- Normalise coefficients to maximise encoding range

5-bit mantissa + 5-bit exponent (base 2)
 → Encoding range [2⁻³¹, 1]

5-bit mantissa + 5-bit exponent (base 2)
 → Encoding range [2⁻³¹, 1]

- Offsetting by threshold increases encoding precision
- 10% thresholded → Encoded range [0.001, 1]

- Offsetting by threshold increases encoding precision
- 50% thresholded \rightarrow Encoded range [0.04, 1]

- Offsetting by threshold increases encoding precision
- 90% thresholded \rightarrow Encoded range [0.12, 1]

- Compactly encodes thresholded wavelet coeffs on disk
- RGB mantissae + common exponent + wavelet coeff index
- 1D coeff index indicates position in matrix after thresholding → Incremental encoding minimises overflow!
- Coeffs offset by minimum, normalised to 1 prior to encoding → Common normalisation factor stored as std. RGBE
- Default config in 32-bit envelope:
 5 bits / mantissa (incl. 1 sign)
 5 bits exponent (base 2, implicitly negative)
 12 bits incremental coeff index
- Avg deviations ~3% if R:G:B \leq 10 \rightarrow Assume low colour saturation

all (3*MANTBITS + EXBITS + DATABITS = 32 bits)						
red (MANTBITS)	grn (MANTBITS)	blu (MANTBITS)	exp (EXPBITS)	dat (DATABITS)		

Results: Bilaterally Lit Scene (3970 Suns, 64 Bins)

Whoops... Binning params not passed to *rcontrib* \rightarrow no suns!

rcontrib classic
-ab 4
~1h @20 cores

Slide 29, 03/08/22

Results: Bilaterally Lit Scene (3970 Suns, 64 Bins)

mkpmap

64M contrib photons 64000 precomputed $(N_p = 2400 \text{ photons})$ 80% compression ~13.5 min @20 cores

rcontrib -ab -1 ~14 sec @20 cores

Slide 30, 03/08/22

Conclusions and Outlook

- Precomputation + caching speeds up contribution photon mapping
- Wavelet compression effectively manages data volume
- Technical report available at: http://dx.doi.org/10.13140/RG.2.2.24397.10721/2
- **BUT...** (and this is a big BUTT)
- More testing with "RealWorld" scenes needed
- Improve compression; other wavelets, thresholding strategy?
- Reduce boundary artefacts
- Code release delayed... um, yeah...
- Paper? Hmmm...
- Future work? Uhhh...

Thank you for your attention!

This research was supported by:

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Grant #179067 (Light Fields for Spatio-Temporal Glare Assessment)