Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

A Case Study of Three-Dimensional Light Flow Expressed Through Volume Photon Mapping

Roland Schregle

CC Building Envelopes Lucerne University of Applied Arts and Sciences, Switzerland

roland.schregle@hslu.ch

19th International Radiance Workshop

18-20 de Agosto, 2021 Bilbao, España Nozomu Yoshizawa, Ken Komazawa, Kaira Ohtani Department of Architecture Tokyo University of Science, Japan

yosizawa@rs.tus.ac.jp, ken_nek_ken_nek2011@yahoo.co.jp, 7121514@ed.tus.ac.jp

Overview

- 1. Motivation
- Physical light field simulation with volume photon mapping ("photon flow")
- 3. Evaluation of cubic illuminance (Cuttle)
- 4. Case study: Kaze-No-Oka crematorium hall
- 5. Results
- 6. Conclusions and future work

Motivation

Precompute a simulated light field to:

- Gain insight into the light transport process ("light flow")
- Assess directionality, direct/indirect lighting ratio
- Assess influence of individual fenestrations, skylights, scattering surfaces
- Assess colour bleeding effects from objects in the space
- Evaluate vector illuminance according to various scalar metrics (e.g. mean spherical, cubic, cylindrical, diffuseness ratio...)
- Provide reference for experiments in perception of visual light field

Physical Light Field Simulation with Volume Photon Mapping ("Photon Flow")

- Directional light distribution as particles (photons) in volume
- Volume photons deposited in nonabsorbing/nonscattering mist
- Photons carry RGB flux, direction
- Estimate illuminance on arbitrary surface (photon density)

Volume Photon Scattering in *mist*

- Extinction σ_t : attenuation per unit distance (optical density) → mean free dist between interactions with medium
- **Albedo** α : scatter probability when interacting \rightarrow absorption 1- α
- Eccentricity g: scattering direction: (-1=bwd, 0=iso, 1=fwd) → angle sampled with phase function (e.g. Henyey-Greenstein)

Inscattered Photon
mean free distance
$$\overline{s} = -\frac{\log \xi}{\sigma_t}$$
, random $\xi \in [0,1]$
 $p(absorption) = 1 - \alpha$, $\alpha \in [0,1]$
 $cos_{HG} \theta = \left\{ \frac{1}{2g} \left[1 + g^2 - \left[\frac{1 - g^2}{1 + g(2\xi - 1)} \right]^2 \right], g \neq 0$
 $2\xi - 1, g = 0 \right\}, \xi \in [0,1], g \in (-1,1)$

Volume Photon Scattering in Photon Flow

"Hack" mist so it does not interfere with photon flow!

- Extinction $\sigma_t \rightarrow$ photon density along path; does not alter <u>overall</u> density, but flux/photon \rightarrow **needs correction!**
- No absorption: **force albedo** $\alpha = 1$
- Forward scattering only: force eccentricity g = 1

```
Inscattered Photon

\overline{s} = -\frac{\log \xi}{\sigma_t}, \text{ random } \xi \in [0, 1]

p(absorption) = 0 \Rightarrow \alpha = 1

\cos \theta = 1 \Rightarrow g = 1
```

Mkpmap Parameters for Photon Flow

Parameter	Description
-apV <pm> <n></n></pm>	Generate ~N lightflow photons
-me	Extinction σ_t of <u>global</u> mist, defines linear photon density along path; implies fwd scattering, no absorption (-mg 1, ma 1 1 1)
-apD	Fraction of photons for prepass; reduce from default .25 to avoid exceeding target N photons with large -me

Example:

mkpmap -me .01 .01 .01 -apD .01 -apV bonzo.Vpm 100m bonzo.oct

<u>Global</u> mist \rightarrow no boundary needed (but not always desirable...)

Photon Flow Visualisation: Point Cloud

pmapdump can dump photons for import in point cloud viewers:

pmapdump -a -n 100k bonzo.Vpm > bonzo.xyz

Photon Flow Visualisation: Vectors as Cones

Cones convey relative vector magnitude and direction

Evaluation of Cubic Illuminance (Cuttle)*

Cubic illuminance: approximates scalar illuminance by 6 measurements on cube faces along orthogonal u,v,w axes

*C. Cuttle. "Cubic Illumination". Lighting Research and Technology, 1997; 29: 1– 14

Evaluation of Cubic Illuminance: Spherical Photon Density Estimate

- Sum flux $\Delta \Phi_p$ from *N* closest photons in sphere around point **x**, <u>ignoring</u> *mist*, normalise by sphere volume <u>and extinction</u> σ_t
- Only accept photons incident from front of axis vector e_i

$$\begin{split} E_{i}(\mathbf{x}) &= \int_{\Omega_{4\pi}} \frac{d^{2} \Phi(\mathbf{x}, \boldsymbol{\omega})(\boldsymbol{e_{i}} \cdot \boldsymbol{\omega})}{\sigma_{t} d \boldsymbol{\omega} d V} d \boldsymbol{\omega} \approx \\ \frac{3}{4 \pi r_{i}^{3}} \sum_{p=1}^{N} \frac{\Delta \Phi_{p}(\mathbf{x}_{p}, \boldsymbol{\omega}_{p})}{\sigma_{t}} (\boldsymbol{e_{i}} \cdot \boldsymbol{\omega}_{p}), \\ \left[p: \| \mathbf{x}_{p}, \mathbf{x} \| \leq r_{i}, \left(\boldsymbol{e_{i}} \cdot \boldsymbol{\omega}_{p} \right) > 0 \right] \end{split}$$

Evaluation of Cubic Illuminance: Hemispherical Photon Density Estimate

Alternatively, sum only photons <u>located in front</u>
 → Reduce bias near boundaries (solid geometry, scene periphery)

$$\begin{split} E_{i}(\mathbf{x}) &= \int_{\Omega_{2n}} \frac{d^{2} \Phi(\mathbf{x}, \boldsymbol{\omega}) (\boldsymbol{e}_{i} \cdot \boldsymbol{\omega})}{\sigma_{t} d \boldsymbol{\omega} d V} d \boldsymbol{\omega} \approx \\ \frac{3}{2 \pi r_{i}^{3}} \sum_{p=1}^{N} \frac{\Delta \Phi_{p}(\mathbf{x}_{p}, \boldsymbol{\omega}_{p})}{\sigma_{t}} (\boldsymbol{e}_{i} \cdot \boldsymbol{\omega}_{p}), \\ \left\{ p : \| \mathbf{x}_{p}, \mathbf{x} \| \leq r_{i}, \left(\boldsymbol{e}_{i} \cdot \boldsymbol{\omega}_{p} \right) > 0, \left(\boldsymbol{e}_{i} \cdot \mathbf{x}_{p} \right) > 0 \right\} \end{split}$$

Case Study: Kaze-No-Oka Crematorium Hall

- Designed by Fumihiko Maki, built 1995-97 in Nakatsu, Japan
- HDR capture of sky and interior under stable conditions (fluctuations < 10%), calibration by luxmetre
- Interior indirectly lit from skylights, fenestration at floor level, external reflection from pond

Case Study: 3D Model

- Geometry from floor plan, height/elevation from measurements
- Materials estimated from measurements or literature

Case Study: 3D Model

- Sky modelled from HDR capture as *brightfunc*
- Skylights, side window, pond as photon ports
 → accelerates photon emission
- Grid of ca. 300 sensor positions spaced ca. 2.5m

Case Study: HDR Sky Capture

実測そのまま (Measured sky luminance)

実測遮蔽後 (Measured sky luminance with shielded sun)

シミュレーション天空 (Simulated sky as *brightfunc*)

Case Study: HDR Interior Capture vs. Simulation (top resp. bottom row)

Case Study: Extinction Parameter

- Extinction determines linear photon density along paths
- Too high \rightarrow "ray effect" (linear clustering) and bias
- Too low \rightarrow *mkpmap* slow, as more photons emitted
- Adapt to num photons N_p and max extent d_{max} of scene geometry: $\sigma_t \propto N_p/d_{max}$ (?)

Case Study: Extinction Parameter & "Ray Effect"*

*Lathrop, K.D. "Ray Effects in Discrete Ordinates Equations", *Nuclear Science and Engineering*; 32:3, pp. 357–369, 1968

Slide 20, 14/08/21

Case Study: RADIANCE Classic vs. Photon Flow (with Photon Ports)

Photon map + photon ports underpredicts due omitted external reflections?

Case Study: RADIANCE Classic vs. Photon Flow (<u>without</u> Photon Ports)

Conclusions and Future Work

- Case study revealed:
 - Photon flow concept and cubic illuminance evaluation is valid
 - ✓ Issues with photon emission from non-quadrilateral ports
 → added triangular sampling [thanks, Greg!]
 - ✓ Issues with missing external reflections using photon ports
 → emit photons from *illum* or backward raytrace from port?
 - Photon flow sensitive to extinction σ_t (ray effect vs. long computation) → optimal value?
- Make code available in official distro; include in default build?
- Paper to appear in Lighting Research and Technology!

Thank You for Your Attention!

Project log: https://www.researchgate.net/project/3D-Light-Flow

This research was graciously supported by JSPS KAKENHI Grant Number JP19KK0115.

JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE 日本学新振興会

