Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

An Ongoing Visual Assessment of Three-dimensional Light Flow Expressed Through Volume Photon Mapping

Roland Schregle

CC Building Envelopes Lucerne University of Applied Arts and Sciences, Switzerland

2019 International Radiance Workshop

21-23 August, ARUP New York

roland.schregle@hslu.ch

Nozomu Yoshizawa, Toshihide Okamoto, Ken Komazawa Department of Architecture Tokyo University of Science, Japan

yosizawa@rs.noda.tus.ac.jp, scott2237@gmail.com, ken_nek_ken_nek2011@yahoo.co.jp

Contents

- 1. Motivation and purposes
- 2. Physical Light Field Simulation with Volume Photon Mapping
- 3. Experimental Assessment of Visual Light Field
- 4. Future works

Developing a new design tool for lighting & architectural design

- The current surface-bound illuminance/luminance distribution represent only the steady state of light transport.
- Sometimes difficult for designers to <u>directly grasp the process of</u> <u>light transport</u> from light sources to the architectural space.

Visualization of threedimensional Coloured Light Flow can provide designers with useful information on light transport and light field.

How does the light scattered in the architectural space affect objects therein? How and to what extent will the light be tinted with colour in the space?

How does the light scattered in the architectural space affect objects therein? How and to what extent will the light be tinted with colour in the space?

This new expression of three-dimensional light flow should

• present quantitatively exact light environment.

Physical Light Field

convey the spatial impression of light environment in the actual spaces.
 Visual Light Field

Human observers cannot see the light flow itself, but they have certain impressions of the spatial light field.

Experimental Assessment

be easy to use for designers!

New RADIANCE method using volume photon mapping

Previous work in 2016/2018 Radiance Workshop

• Invisible layers using *antimatter* should be added to the model.

Physical Light Field Simulation: Photon Flow

- Goal: simulate physical light field with RADIANCE photon map by depositing light particles in 3D → photon flow
- Evaluate scalar illuminance from photon flow at arbitrary points
- Previous work stored global photons on antimatter planes
 → geometric overhead, distribution artefacts → local bias

N.Yoshizawa, S.Mori. "An Expression of Three-Dimensional Distribution of Light in Architecture with Photon Flows". *15th International RADIANCE Workshop, Padua, 2016.*

Physical Light Field Simulation: Photon Flow

- Idea: use <u>volume</u> photon mapping with participating media (*mist*)
- Volume photons <u>not</u> surface bound → deposited in space
- Photon density conveys flux distribution
- Photon flux conveys colour from scattering surfaces

Volume Photon Mapping: Overview

 Renders <u>indirect</u> inscattering from participating media: gases, fluids, tissue, translucent surfaces (subsurface scattering)

- Supported in RADIANCE since 1st patch release (~1999)
- Specialty: volume caustics

H. Wann Jensen, P.H. Christensen. "Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps". *Proceedings SIGGRAPH* '98, 311–320.

Volume Photon Mapping: Photon Scattering

- **Extinction** σ_t : attenuation per unit distance
- **Albedo** σ_a : inv. probability of absorption during scattering
- Eccentricity g: scattering direction distribution:
 (-1 = backward, 0 = isotropic, 1 = forward)
 → angle sampled with phase function (e.g. Henyey-Greenstein)

Inscattered Photon
mean free distance
$$\overline{s} = -\frac{\log \xi}{\sigma_t}$$
, random $\xi \in [0,1]$
 $p(absorption) = 1 - \sigma_a, \ \sigma_a \in (0,1)$
 $o = \left\{ \frac{1}{2g} \left[1 + g^2 - \left[\frac{1 - g^2}{1 + g(2\xi - 1)} \right]^2 \right], \ g \neq 0$
 $2\xi - 1, \ g = 0 \right\}, \ \xi \in [0,1], \ g \in (-1,1)$

Volume Photon Mapping: Photon Scattering

But medium should not interfere with photon flow!

- Extinction $\sigma_t \rightarrow$ photon density along path; does not alter <u>overall</u> density, but flux/photon \rightarrow factor into illum!
- No absorption: albedo $\sigma_a = 1$
- Forward scattering only: eccentricity g = 1

Inscattered Photon

$$\overline{s} = -\frac{\log \xi}{\sigma_t}, \text{ random } \xi \in [0, 1]$$

$$p(absorption) = 0 \Rightarrow \sigma_a = 1$$

$$\cos \theta = 1 \Rightarrow g = 1$$

Mkpmap Parameters for Photon Flow

Parameter	Description
-me	Extinction σ_t in RGB
-ma	Albedo σ_a in RGB
-mg	Eccentricity g
-apD	Fraction of photons for prepass; reduce from default .25 to avoid exceeding target N photons with large -me
-apv <pm> <n></n></pm>	Generate ~N volume photons

Example:

```
mkpmap -me .01 .01 .01 -ma 1 1 1 -mg 1 -apD .01
-apv bonzo.vpm 100m bonzo.oct
```

-me, -ma, -mg define a <u>global</u> mist \rightarrow no extra geometry needed!

New pmapdump Parameters

pmapdump now optionally dumps photons as point list (pos, flux):

pmapdump $-a -f -n 100k \text{ bonzo.vpm} \rightarrow \text{Import in point cloud viewer}$

Evaluating The Physical Light Field: Cubic Illuminance

Cubic illuminance: approximate scalar Illuminance by 6 measurements on cube faces along orthogonal u,v,w axes

C. Cuttle. "Cubic Illumination". Lighting Research and Technology, 1997; 29: 1–14

Evaluating The Physical Light Field: Preliminary Tests

- How to evaluate scalar illuminance from photon flow? ٠
- Hypothesis: local photon density \propto scalar cubic illuminance •

area light source

Simulated box with Evaluate scalar cubic illuminance with *rtrace* at 10³ sensor points

Distribute vol. photons with *mkpmap*, find *n* nearest in fixed radius r around sensor points

Evaluating The Physical Light Field: Preliminary Tests

Local photon density linearly proportional to scalar cubic illum E_s \rightarrow adapt volume photon density estimate to approximate E_s

Evaluating The Physical Light Field: Photon Density Estimate

Volume photon density estimate: computes inscattering from photons in sphere of radius *r* containing *n* photons, <u>ignoring</u> medium

- Every photon contributes flux ϕ_i with weight w_i
- Need to factor in extinction as $f(\sigma_t) \rightarrow TODO!$

Idea: pmapquery [Optional]

- General photon map interrogation tool (c.f. *bsdfquery*)
- Provides interface for custom pmap applications (= abuse)
- Desiderata:
 - Nearest neighbour lookup
 - Hemispherical/spherical irradiance/illuminance
 - Photon density
 - Photon weights via user-defined function file?
 - List of found photons: pos, flux, distance to query point

Visual Light Field

Human observers infer the light field in the actual space.

The appearances of objects

Psychological response to the lit environment

To what extent observers can estimate the visual light field from the Photon Flow expression?

The visual light field at any given point can be measured through the appearance of **shade on a "gauge object**" at that position.

by Jan J Koenderink 2007

Illumination Vector & Scalar illuminance

is a traditional way to depict threedimensional light flow, and used to represent the "modelling" - the balance of direct/indirect light on the object -

Some drawbacks for estimating visual light field, e.g. the light flow by multiple light sources...

Actual Experimental Room

Photon Flow

Subjects observe the actual experimental room.

Subjects observe the photon flow presented on a computer monitor.

Subjects infer the shades and colour on the **virtual (i.e. actually not present)** gauge objects at some positions in the room.

Can visual Light Field in the actual experimental room be estimated from the Photon Flow Expression?

Preliminary Experiment in the Actual Experimental Room

Actual Experimental Room and Gauge Objects: Red floor, white walls & ceiling

Subjects should estimate the appearance of *virtual* white gauge objects which are *actually not present in the room*.

The positions of gauge objects are indicated on the Plan & Section Drawings.

Preliminary Experiment in the Actual Experimental Room

Various images of the shade and colour on the gauge objects are rendered with Radiance beforehand. Luminous intensity distribution of the luminaires (i.e. the beam angle of the spotlight) was varied.

Exact luminance and chromaticity can be reproduced on a monitor.

[EIZO CG2420] Resolution: 1920*1200 **16-bit** LUT Color Gamut: Adobe RGB 99% Maximum luminance: 400cd/m² Minimum luminance: 0.26cd/m²

Preliminary Experiment in the Actual Experimental Room

1.Subjects observe the actual experimental room.

A **spotlight** (**Beam angle: 20 degree**) at the center of the ceiling. One gauge object is **assumed to be positioned** below the spotlight at eye level.

2.Subjects infer the shade and colour on the **virtual** gauge object, and respond whether each rendered image displayed on an HDR monitor appears **correct/undecided/incorrect**.

These images have different **luminous intensity distribution** of the luminaire (**beam angles of the spotlight**): Narrow spotlight (Left) – Wide spotlight (right)

Preliminary Experiment in the Actual Experimental Room

Preliminary result

The number of subjects are currently six, but will be increased.

In actual experimental room, spotlight with 20-degree beam angle was set up.

Open Issues

The setting of the experimental room and the monitor will be fine-tuned toward the main experiment.

Photon Flow (sample) in the main experiment

Expand preliminary experiment and analyze the results Conduct the main Experiment involving sufficient observers Apply to various architectural design studies Evaluate physical light field from photon flow

Future Works

Thank you for your attention!

This research is pending funding approval by the Grants-in-Aid for Scientific Research (KAKEN), Japan