

Better, Faster, Stronger Super-Fast Glare Analysis and Real-Time Visualization

Nathaniel Jones

August 22, 2019

S D L A B

Massachusetts Institute of Technology Sustainable Design Lab

Arup San Francisco Advanced Technology & Research Problem

How can simulation be an effective design tool?

Problem

How can simulation be an effective design tool?

Create a stronger connection between tool and user

Provide **faster** results for annual and spatial glare analysis

Make **better** decisions using real-time glare analysis

Accurate 49 minutes

Fast 1.5 minutes

Time • Command • GH • Add • Delete • Draw • Save

Raymond E. Barber and Henry C. Lucas, Jr., 1982. System Response Time Operator Productivity, and Job Satisfaction. Communications of the ACM, 26(11), 972-986.

Unified Theories of Cognition

Allen Newell

Deliberate Act

Mouse, Trackpad, Keyboard < 0.1 s

Cognitive Operation

Pointing, Commands, Requests 0.1 – 1.0 s Unit Task Modeling, Writing, Games > 1.0 s

Data up to the year 2010 collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten Data for 2010-2015 collected by K. Rupp

Data up to the year 2010 collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten Data for 2010-2015 collected by K. Rupp

Data up to the year 2010 collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten Data for 2010-2015 collected by K. Rupp

CPU

4608 cores + 72 RT cores

4 CORES Intel Kaby Lake

Nvidia Turing

Problem

How can simulation be an effective design tool?

Create a stronger connection between tool and user

Provide **faster** results for annual and spatial glare analysis

Make **better** decisions using real-time glare analysis

Task

Evaluate glare at every point in a room in every viewing direction at every hour of the year for multiple façade designs

Daylight Autonomy (DA)

DA_{300lux}

Fraction of occupied time in which daylighting achieves 300 Lux

Spatial Daylight Autonomy (sDA)

sDA_{300lux,50%}

Fraction of space in which daylighting achieves 300 Lux in at least 50% of occupied hours

Reinhart, Rakha, and Weissman, 2014. Predicting the daylit area—A comparison of students assessments and simulations at eleven schools of architecture. *LEUKOS: The Journal of the Illuminating Engineering Society of North America*, 10(4), 193-206.

Daylight Autonomy (DA)

DA_{300lux}

Fraction of occupied time in which daylighting achieves 300 Lux

Glare Autonomy (GA)

Fraction of occupied time in which daylight glare probability is less than 40%

Spatial Daylight Autonomy (sDA)

sDA_{300lux,50%}

Fraction of space in which daylighting achieves 300 Lux in at least 50% of occupied hours

Spatial Glare Autonomy (sGA)

sGA_{40%,5%}

Fraction of space in which daylight glare probability exceeds 40% for no more than 5% of occupied hours Daylight Glare Probability (DGP)

$$DGP = 5.87 \times 10^{-5} E_{v} + 0.0918 \times \log_{10} \left(1 + \sum_{i=1}^{n} \frac{L_{s,i}^{2} \omega_{s,i}}{E_{v}^{1.87} P_{i}^{2}} \right) + 0.16$$

Brightness Contrast Guth position inde

819 locations

8 directions

 $\boldsymbol{\times}$

 $\boldsymbol{\times}$

2080 hours

14 million images

Solution Use matrix-based methods

2-Phase Method

1. Model

2. Find Glare Sources in Scene

Daylight Glare Probability (DGP)

Daylight Glare Probability (DGP)

Jones, N.L., 2019. *Fast climate-based glare analysis and spatial mapping*. 16th International Conference of the International Building Performance Simulation Association, Rome, Italy, September 2–4.

Spatial Glare Autonomy (sGA)

	Method	Calculation Time
	Individual Renderings	1600 years
	2-Phase Rendering	6 years
	Batch Rendering	600 days
	Batch Rendering with eDGPs	164 days
	Imageless DGP	25 minutes
	Imageless DGP on GPU	2 minutes

Accelerad

Calculating Annual DGP

1. Calculate *S* for each hour of the year

gendaymtx -of NYCity.wea > sky.smx

2. Calculate D_{direct} for each view position and direction using the two-phase method

rcontrib -e MF:1 -f reinhartb.cal -b rbin -bn Nrbins -m sky_mat -I+ -ab 1
-ad 50000 -lw .00002 -lr -10 -faf scene.oct < views.vf > dc1.mtx

 Calculate D_{total} for the same view positions and directions using the two-phase method or a higher-order multi-phase method

rcontrib -e MF:1 -f reinhartb.cal -b rbin -bn Nrbins -m sky_mat -I+ -ab 8
-ad 50000 -lw .00002 -lr -10 -faf scene.oct < views.vf > dc8.mtx

4. Calculate DGP for each hour and view

dcglare -vf views.vf dc1.mtx dc8.mtx sky.smx > dgp.txt

Calculating Glare Autonomy

1-3. As before

4. Calculate GA using a schedule and glare limit

```
8/60-hour occupancy schedule DGP Limit (compatible with Daysim schedules) i.e. \text{ GA}_{40\%}
```

Limitations

- Only sun and sky as glare sources
- No specular reflections (*e.g.* polished floors, reflective ground surfaces, or bodies of water)
- No light-redirecting fenestration systems
- No electrochromic glazing
- Still not real-time

Stephen Selkowitz

Problem

How can simulation be an effective design tool?

Create a stronger connection between tool and user

Provide **faster** results for annual and spatial glare analysis

Make **better** decisions using real-time glare analysis

Problem

How do we achieve real-time rendering?

Experiment

Do faster tools make a difference?

Discomfort Glare Sun in the field of view Veiling Glare Reflections obscure screen **Dim Lighting** Insufficient task illumination

Design Goals

Daylight Glare Probability Veiling Glare Work Surface Illuminance

< 35% < 50 cd/m² reflected > 300 lux (~48 cd/m²)

Comfortable View

DGP: 25%
 Screen: 25 cd/m²
 Desk: 100 cd/m²

Screen: 400 cd/m² Desk: 150 cd/m²

Uncomfortable View

DGP: 100%

Results

How do tools affect user behavior?

Minneapolis AcceleradRT

Albuquerque DIVA-for-Rhino

N

AcceleradRT

DIVA-for-Rhino

Average Number of Interactions

Jones, N.L. and Reinhart, C.F. (2019). Effects of real-time simulation feedback on design for visual comfort. *Journal of Building Performance Simulation*, 12(3), 343–361.

Results

How do tools affect design quality?

Minneapolis

Albuquerque

Background

Results

How do tools affect user satisfaction?

More confident in glare assessment

More confident in final design performance

More familiar tool

AcceleradRT 2016

AcceleradRT 2019

Accelerad

AcceleradRT from the command line

1. False color hemispherical view

AcceleradRT -vp 85 21 46 -vd 0 -1 0 -vu 0 0 1 -vta -vv 180 -vh 180 -ab 3 -aa 0 -ad 1 -x 512 -y 512 -s 10000 -log 3 -m 0.1 scene.oct

2. Cinematic view

AcceleradRT -vp 85 21 46 -vd 0 -1 0 -vu 0 0 1 -vtv -vv 40 -vh 60 -ab 3 -aa 0 -ad 1 -x 1920 -y 1080 -s 10000 -log 0 scene.oct

Real-Time Daylighting Model with **1 Billion Polygons** TH

nathaniel.jones@arup.com

https://nljones.github.io/

https://nljones.github.io/Accelerad/