Designing Visually Accessible Spaces (DeVAS): Visibility prediction tools and introducing the Hazard Visibility Score

Research supported by NIH grant EY017835

Rob Shakespeare Indiana University

Gordon Legge (by video) University of Minnesota

18th International Radiance Workshop Hosted by ARUP, NYC, August 21-23, 2019

DESIGNING VISUALLY ACCESSIBLE SPACES

Gordon E. Legge, PhD

UNIVERSITY OF MINNESOTA

Why is Visibility Prediction Important?

Fully sighted acuity20/20Low vision (US definition)20/40Legal blindness threshold (US)20/200Blindness threshold (WHO)20/400

Visual impairment	2017	2050	
less than:	millions	millions	
Low vision	5.7	9.6	
Legal blindness	1.3	2.3	
C			
Completely blind	.24	.42	
completely sind		•••=	

Source: Chan, T., D. S. Friedman, C. Bradley and R. Massof (2018)

Why is Visibility Prediction Important?

Fully sighted acuity20/20Low vision (US definition)20/40Legal blindness threshold (US)20/200Blindness threshold (WHO)20/400

2017	2050	
millions	millions	
5.7	9.6	
1.3	2.3	
.24	.42	
	2017 millions 5.7 1.3 .24	2017 2050 millions millions 5.7 9.6 1.3 2.3 .24 .42

Source: Chan, T., D. S. Friedman, C. Bradley and R. Massof (2018)

Low Vision community has visual ability BUT we do not yet robustly include their visual needs in our environments.

De	VA	S
----	----	---

Specific Area	General Light Reflectance Value Range [1,2,10] (See note 1)	Minimum Value Contrast at Edge (%) [2,3,4,8,10, 11] (See note 2)	Minimum Value Contrast to Adjacent or Background Surfaces [2,3,4,11] (See note 2)	Maximum Sheen (Gloss Units GU) [2,4,5,6,10] (See note 3)	Change of Texture [2,4] (See note 4)	Pattern Restriction [2,4](See note 5)	Comment [2,5,9]
Offices & Class Rooms	S						
Floors	20 – 50	30	30	1 – 25	YES	YES	
Walls	60 - 80	N/A	30	25 – 40	N/A	N/A	
Display Walls	N/A	N/A	30	25 – 40	N/A	N/A	
Seating	N/A	N/A	30	N/A	N/A	N/A	
Table Tops/Counters	30 – 60	30	30	10 - 25	N/A	N/A	
Table Tops/Counters 30 - 60 30 30 10 - 25 N/A N/A							

Interior designer might specify adjacent materials with a 30% contrast

D	e	V	A	S
---	---	---	---	---

	Specific Area	General Light Reflectance Value Range [1,2,10] (See note 1)	Minimum Value Contrast at Edge (%) [2,3,4,8,10, 11] (See note 2)	Minimum Value Contrast to Adjacent or Background Surfaces [2,3,4,11] (See note 2)	Maximum Sheen (Gloss Units GU) [2,4,5,6,10] (See note 3)	Change of Texture [2,4] (See note 4)	Pattern Restriction [2,4](See note 5)	Comment [2,5,9]	
	Offices & Class Rooms	\$							
	Floors	20 – 50	30	30	1 – 25	YES	YES		
	Walls	60 – 80	N/A	30	25 – 40	N/A	N/A		
	Display Walls	N/A	N/A	30	25 – 40	N/A	N/A		
	Seating	N/A	N/A	30	N/A	N/A	N/A		
	Table Tops/Counters	30 – 60	30	30	10 - 25	N/A	N/A		
Interior designer might specify adjacent materials with a 30% contrast									
interior designer might specify adjacent materials with a 30% contrast									

Lighting designer might follow a recommended practice of 300 LUX

Specific Area	General Light Reflectance Value Range [1,2,10] (See note 1)	Minimum Value Contrast at Edge (%) [2,3,4,8,10, 11] (See note 2)	Minimum Value Contrast to Adjacent or Background Surfaces [2,3,4,11] (See note 2)	Maximum Sheen (Gloss Units GU) [2,4,5,6,10] (See note 3)	Change of Texture [2,4] (See note 4)	Pattern Restriction [2,4](See note 5)	Comment [2,5,9]
Offices & Class Rooms	S						
Floors	20 – 50	30	30	1 – 25	YES	YES	
Walls	60 – 80	N/A	30	25 – 40	N/A	N/A	
Display Walls	N/A	N/A	30	25 – 40	N/A	N/A	
Seating	N/A	N/A	30	N/A	N/A	N/A	
Table Tops/Counters	30 – 60	30	30	10 - 25	N/A	N/A	
A Sec B SACCE PLATE CORRAL VINAL PLATE CORRAL VINAL QTY - 156							QTY - 156
	MU CLE	ook.					QTY - 12

Interior designer might specify adjacent materials with a 30% contrast **Lighting designer** might follow a recommended practice of 300 LUX Typically the **impact of the lighting layout**, in relationship to variations in material locations and reflectance, remains independent.

A shift in luminaire location obliterates a 60% difference in the reflectivity of these materials. Note how the edge disappears, in the right image, by moving the luminaire 2'

Design by luminance, not by illumination and material contrast specifications, IS DESIGN BY WHAT WE SEE **Background:**

Acuity and Contrast

Acuity

20/20

30 cpd

Acuity

20/40 15 cpd

20/80 7.5 cpd

J Opt Soc Am A Opt Image Sci Vis. 2017 April 1

Our approach builds on the work of Eli Peli, who described a method for transforming an image to simulate the visibility associated with a particular Contrast Sensitivity

J Opt Soc Am A Opt Image Sci Vis. 2017 April 1

(Thompson, Legge, Kersten, Shakespeare, Lei)

Slide left for reduced Acuity – Slide down for reduced Contrast Sensitivity

Fig. 1.

The Chung & Legge [15] CSF is an asymmetric parabola when plotted in $f_i - S_l$ space. The plotted values show two instances of the CSF, one shifted left (lower acuity) and down (lower contrast sensitivity) compared to the other.

J Opt Soc Am A Opt Image Sci Vis. 2017 April 1

When the **DeVAS-Filter** is applied with a specific acuity to a high dynamic range image

Removes image details predicted to be not visible,

while leaving intact, details predicted to BE visible.

DeVAS Filter J Opt Soc Am A Opt Image Sci Vis. 2017 April 1

(Legally Bilind: 20/200 or less with best possible correction)

Fig. 8.

(a) Original logMAR chart, with third line from top corresponding to logMAR 1.1 and the fourth line from the top corresponding to logMAR 0.9. For correct character size, view the chart from a distance equivalent to 3.33 times the width of the chart image. (b) Original logMAR chart, filtered to simulate an acuity of logMAR 1.0. The third line is readable, the fourth line is not.

J Opt Soc Am A Opt Image Sci Vis. 2017 April 1

Original RADIANCE renderings.

Original filtered to simulate severe low vision.

DeVAS Visibility

DeVAS-Visibility: The application tool, built upon DeVAS-Filter, that predicts visibility.

DeVAS Visibility DeVAS-Visibility: Automated Visibility Prediction Application

Radiance Rendering plus Geometry Data New: **rtpict**

Ground Truth Edges

Luminance Boundaries: Canny Edges **DeVAS** Visibility

Ground Truth Edges

Severe Low Vision

RED edges predicted **NOT** to be visible Green edges predicted visible for Severe LV

DeVAS Visibility

Subjective or Objective

Judge what is likely not visible ?

Automated visibility Analysis ?

DeVAS-Visibility

DeVAS-Filter

Visibility

DeVAS Visibility Workflow Examples

Low Vision: Severe

Low Vision: Severe

Visibility

Change bench material

Low Visions Mild

Low Vision? Moderate

Low Vision Legally Blind Threshold

Low Vision? Severe

Low Vision? Profound

Visibility

Change the bench type and material

Low Vision? Severe

Change the illumination

DeVAS Visibility

Low Vision Severe

Low Vision⁵: Profound

HDR Photo

Severe Filter of Model

HDR Photo

Severe Filter of HDR Photo

Severe Filter of Model

Low Vision: Mild

1.1.0

Low Vision: Moderate

Low Vision: Profound

Change flooring

Change baseboards

Add white stripes

Black stripes +

Low Vision: Severe

Hmmm. Which has greater visibility?

Low Vision: Severe

Hmmm. Which has greater visibility?

Low Vision: Severe

Hmmm. Which has greater visibility?

Low Vision: Severe

Hmmm. Which has greater visibility?

Low Vision: Severe With user selected **Region Of Interest** (ROI) DeVAS ROI

Hazard Visibility Score for comparison of same ROI. Not yet calibrated

HVS: 0.900 Severe

HVS: 0.947 Severe

HVS 1.0 = highly visible HVS 0.0 = invisible DeVAS ROI

HVS: 0.597 Profound

Mild	HVS= 0.84	
Moderate	HVS= 0.74	
LB	HVS= 0.67	
Severe	HVS= 0.51	
Profound	HVS= 0.17	1

Mild	HVS = 0.97	
Moderate	HVS = 0.98	
LB	HVS = 0.98	
Severe	HVS = 0.98	
Profound	HVS = 0.84	57

48" x 96" skylight at 8' above floor

Design by luminance

Possible annual atrium/exterior daylight HV studies?

Possible annual atrium/exterior daylight HV studies? Determine dangerous hazard times/dates and address

DeVAS Validation Study Results: Simulated Low Vision

5 Views x 5 Platform Variations x 5 Lighting Conditions = 125 images each with HVS for SEV & PRO

250 images x 14 subjects = 3500 samples
DeVAS Validation Study Results: Simulated Low Vision

Hazard Visibility Score (HVS) predicts Human Performance!

- As HVS increases, probability of identifying the step correctly increases

DeVAS Validation Study Results: Low Vision Individuals (from ongoing study)

Hazard Visibility Score (HVS) predicts Human Performance!

- As HVS increases, probability of identifying the step correctly increases

Crucial

20'

DeVAS Limitations

View Dependent

Requires lighting and material specifications

Very high luminance areas can mask nearby lower luminance details

Strident high contrast material patterns can result in incorrect visibility analysis

Visibility Recommended Practice to evaluate: Compliant/not Compliant

Photographs

Simulation

DeVAS Limitations

View Dependent

Requires lighting and material specifications

Very high luminance areas can mask nearby lower luminance details

Strident high contrast material patterns can result in incorrect visibility analysis

Visibility Recommended Practice to evaluate: Compliant/not Compliant

Future Work

Extensive testing over many different physical spaces

Additional testing and calibration with low vision subjects

User interface work to make the system user friendly (by developers)

DeVAS Future

DeVAS Tools are open source, fully functional prototypes compiled for Windows and OSx. DeVAS Visibility is being incorporated into LADYBUG, a RHINO/GRASSHOPER plugin. We welcome other developers.

rtpict: a gift from Greg that generates and associates all files necessary for DeVAS-visibility

RTPICT(1)

RTPICT(1)

rate

re

¥>

NAME

rtpict - generate a RADIANCE picture or layerd image using rtrace

SYNOPSIS

rtpict -n nproc [-o[vrxlLRXnNsmM] out_dir][-d ref_depth/unit] [rpict options] [@file] octree

DESCRIPTION

Rtpict is a script that generates a picture from the RADIANCE scene given in octree and sends it to the standard output, or to a file specified with the -o option. Most options and defaults are the same as rpic(1), although a few switches are silently ignored. Options incompatible with multi-processing can generate an error.

The trace(1) tool is called with waray(1) to perform the actual work. This enables the -n option for multiprocessing on platforms that support it. If the -n option is not specified or is set to 1, then rpict is called directly. There is no benefit in setting the number of processes to anything greater than the number of virtual cores available on your machine. Also, it is very important to set the -q option if an irradiance cache is being generated; otherwise, your speed-up will be far from linear.

If the -o option has additional characters corresponding to output types from *trace*, it must be followed by the name of a directory that either exists or will be created to contain image layers, one per output type. The supported types are listed below, and do not include types that are useless or have no convenient representation. The table below shows the correspondence between output type and file name in the specified directory:

radiance hdr mirrored.hdr effective.dpt firstsurface.dpt mirrored.dpt ummirrored.dpt perturbed.nrm unperturbed.nrm surface.idx modifier.idx

material idx

٠

Preview image files

Please find the source code from:

This component ran once.

https://github.com/MingboPeng/Ironbug

Ladybug_ImageViewer (Viewer)

78

hdr_file

units

add output C

DeVAS Future

DeVAS tools enable the designer to analyze and improve visibility of hazards, potentially within the design palette of the project

Standards could potentially be structured for luminance studies, such as DeVAS, where compliance is sought to a visibility metric standard

DeVAS Summary

The DeVAS-visibility tool provides a proof-of-concept for a design process that uses (1) viewpoint-specific luminance-based analysis and (2) simulations of low vision, to aid in the creation of architectural spaces that are accessible to those with vision impairment who make use of vision for mobility.

Currently, it can be used as a tool for enhancing visual accessibility as a part of universal design. With additional data collection from actual low vision individuals on hazard visibility in realistic settings, and with specification of critical viewpoints for hazard detection, the DeVAS system can provide a starting point for **luminance-based design standards**.

Designing Visually Accessible Spaces (DeVAS): A Tool to Predict Visibility of Potential Hazards During the Design Phase

Recent focus group presentations/discussions include:

Access Board, ADA, Washington, D./C.

"..the direction which our work has opened up will very likely change the focus of future more robust visual accessibility code"

ARUP, Lighting Design Group, World Headquarters, London, G.B

"Design for inclusiveness is important now" "Absolutely add this to our workflow. Safety is a concern, and the tool helps with that"

VELUX, Knowledge Center, Horsholm, Denmark

"The tool is exciting " "Consider an image format which contains geometry to upload for cloud processing"

Moody Nolan, Architects, Columbus, Ohio

"Fantastic tool!" "We hope it gets developed into a tool we can use" "Consider adding points to LEED, WELL Building, Fitwel certifications for buildings that use the tool and comply with the guidelines"

DIVA, Environmental Analysis for Buildings

"we would implement this tool in our software suite tomorrow, if there were recommended practices for compliance"

DeVAS Questions and Comments?

Principal Research Team:

Dr. Gordon Legge, Psychology, Low Vision Lab, University of Minnesota

Dr. Dan Kersten, Psychology, Computational Vision, University of Minnesota

Dr. Bill Thompson, Computer Science, University of Utah,

Dr. Sarah Creem-Regehr, Psychology, Cognition and Neural Science, University of Utah Rob Shakespeare, Lighting Designer, Indiana University DeVAS Questions and Comments?

Thank you!

Principal Research Team:

Dr. Gordon Legge, Psychology, Low Vision Lab, University of Minnesota

Dr. Dan Kersten, Psychology, Computational Vision, University of Minnesota

Dr. Bill Thompson, Computer Science, University of Utah,

Dr. Sarah Creem-Regehr, Psychology, Cognition and Neural Science, University of Utah Rob Shakespeare, Lighting Designer, Indiana University