Predicting Solar Irradiance Data Using Machine Learning

Matt Franks, Associate Principal 2019 Radiance Workshop August 22, 2019

One Day

One Year

Roof Monitor Layers:

Section Detail - Gallery 2

Low iron insulated glazing unit with laminated diffusing inner lite to provide ultra violet filter. Low iron glass is used to maximise colour rendering. Low-e coatings are as neutral in color terms as possible to maintain color rendering of the skylight glass unit of 97 or above. The laminated inner layer will be diffusing to mitigate direct sunlight penetration.

Motorised blackout roller shade to reduce daylight exposure outside museum open hours and allow for flexibility in the allowance of daylight into the gallery. The blackout shade should be provided with side-channels to eliminate light spill around the edges of the shade.

Motorised dimout roller shade to allow for reduction of light levels passing through the skylight system. The shade shall be an open-weave materials with 5% openness and a 10% to 15% visible light transmission, to be determined.

Interior diffusing glass to further diffuse directionality of light and obscure view of structure, roller shades and lighting. This shall be laminated with a diffusing interlayer, and be operable to allow easy access for maintenance. The interior glazing will have an acid-etch finish to reduce interior specular reflections.

3.6 Galleries 2, 4, 6, 8, and 10

3.6.1 Approach

Galleries 2, 4, 6, 8, and 10 will have similar daylight system designs, consisting of a roof monitor system. Refer to the architectural plans for the arrangement and dimensions of roof monitors in each gallery.

It is expected that Gallery 2 will generally be used to display parts of the permanent collection – typically a mixture of oil paintings, photographs, sculpture.

It is also recognized that Gallery 2 would at times be used for mixed media collections, which means that some works on paper may be displayed along with oil paintings and sculpture. Blackout, if required, is proposed to be provided by the deployment of roller shades in the roof monitors.

Galleries 4, 6, 8, and 10 will be used for more permanent exhibitions. It is understood that upon completion of construction Galleries 4 and 6 will exclude daylight due to the nature of their exhibits, however provisions for daylighting will be included in the design.

3.6.2 Proposed daylight system

The ceiling consists of a roof monitor system which introduces generous but controlled daylight into the gallery below. The images to the left illustrate the proposed system, which consists of a number of layers:

- Exterior vertical diffusing glass, running in the eastwest direction
- · Interior motorized blackout shade
- Interior motorized roller shade
- Interior diffusing Glass

These sets of layers will occur on both the north and south sides of the roof monitor. By allowing sunlight to be diffused through the layers of the southern glazing, and northern skylight to be transmitted and diffused through the north-facing glazing, the lighting conditions in the gallery will vary through out the day as sun position and weather patterns change.

Keyplan

Gallery 2 4.4

٠

٠

٠

- · Outer Glazing Transmittance: 53% 64% Inner Glazing Transmittance: Wall Reflectance: 75% Concrete Reflectance: 70% Floor Reflectance: 50% · Calculation Time: 12:00 p.m. on date indicated
- · Measurement points are at location indicated in images. Unless otherwise indicated images shown are for March 31, overcast conditions.

	Day	Weather	N (fc)	E (fe)	S (fe)	W (fe)	F (fc)
	Mar 21	Overcast	114	93	106	94	143
	Mar 21	Sunny	351	257	220	262	388
	Lug 21	Overcast	119	100	116	101	153
	Jun 21	Sunny	266	200	215	203	298
	Dec 21	Overcast	72	59	65	59	91
		Sunny	149	119	92	118	186

N, E, S, W, measurement points are on North, East, South, and West walls respectively; F measurement point is horizontal illuminance on floor. S and W points are not pictured.

Keyplan

Day	Weather	North (fc)	East (fe)	South (fc)	West (fc)	Floor (fc)
Mar 21, 12:00 p.m.	Overcast	114	93	106	94	143
	Sunny	351	257	220	262	388

	North	East	South	West	Floor
	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)
Annual Cumulative Exposure	457	350	362	353	524

Gallery 2 - Roof Monitor Section

Gallery 2 - Plan

Annual Illuminance Profile on East Wall at Point E

Day	Weather	North (fc)	East (fe)	South (fc)	West (fc)	Floor (fc)
Mar 21, 12:00 p.m.	Overcast	114	93	106	94	143
	Sunny	351	257	220	262	388

	North	East	South	West	Floor
	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)
Annual Cumulative Exposure	199	152	156	154	227

Gallery 2 - Roof Monitor Section

Gallery 2 - Plan

278' 9'

Annual Illuminance Profile on East Wall at Point E

	Day	Weather	North (fc)	East (fe)	South (fc)	West (fc)	Floor (fc)
	Mar 21, 12:00 p.m.	Overcast	33	27	31	28	42
		Sunny	123	79	66	79	116

Dimout shade drawn

	North	East	South	West	Floor
	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)
Annual Cumulative Exposure	59	46	47	46	68

Gallery 2 - Roof Monitor Section

Gallery 2 - Plan

Annual Illuminance Profile on East Wall at Point E

Day	Weather	North (fc)	East (fe)	South (fc)	West (fe)	Floor (fc)
M - 21 - 12 - 00	Overcast	90	60	50	61	91
Mar 21, 12:00 p.m.	Sunny	345	212	138	214	293

	North	East	South	West	Floor
	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)	(k-fc-hr)
Annual Cumulative Exposure	169	108	81	109	163

Dec

Gallery 2 - Roof Monitor Section

Annual Illuminance Profile on East Wall at Point E

Why might reality be different than what was predicted?

- Real reflectances differ from those assumed
- Dirt more or less than assumed
- Constructed dimensions differ from design
- Inaccuracy of calculation methods

Why might reality be different than what was predicted?

- Real reflectances differ from those assumed
- Dirt more or less than assumed
- Constructed dimensions differ from design
- Inaccuracy of calculation methods

+/- 5% +/- 1%

+/- 5%

+/- 5%

Computer Simulation - Gallery 2 - Greyscale

Photo - Gallery 2 Model

2.3 Illuminance Distribution

The images on this page show comparisons between the computer model daylight distribution simulation, both in greyscale and falsecolor luminance.

The luminance distribution images show reasonable uniformity as well as agreement with the computer simulated distribution. Note that the slight dropoff in the center of wall on the right side of the image is due to the model construction, which consists of a mirror to replicate the appearance of two additional clerestories.

Computer Simulation - Gallery 2 - Falsecolor

Photo - Gallery 2 Model - Falsecolor

Gallery 2 Illuminance - Calculated and Measured

Gallery 2 Calculated
 Gallery 2 Measured

Gallery 2

2

2.1 Illuminance Levels - Annual

The scatter plot on the left side of this pages shows a comparison between the hourly illuminance data calculated for the north wall of Gallery 2 for each hour of the year based on typical weather data from the November 15, 2012 daylighting report (blue dots), overlayed with hourly data measured from the Gallery 2 model on days that measurements was possible (red squares).

Indicated on the scatter plot is the times that the three different shade configurations were installed in the model.

- · No shades from January to April 30.
- Shades on only the south clerestory from May 1 to July 14.
- Shades on both the north and south clerestories for the remainder of the year.

The shade material used in the model was the shade material currently specified, Mermet Screen Vision:

- 10% openness
- 29% visible light transmittance
- white color

The general trend of the data indicates fairly close correlation between the computer model and the measured illuminance, with illuminance peaks at similar levels.

Gallery 9 Illuminance - Calculated and Measured

3 Gallery 9

3.1 Illuminance Levels - Annual

The scatter plot on the left side of this pages shows a comparison between the hourly illuminance data calculated for the west wall of Gallery 9 for each hour of the year based on typical weather data from the November 15, 2012 daylighting report (blue dots), overlayed with hourly data measured from the Gallery 9 model on days that measurements was possible (red squares).

The general trend of the data indicates fairly close correlation between the computer model and measurements in relative terms, however it can be seen from scatter plot that the gallery 9 measurements are in the range of 30% lower than predicted.

There are several factors that may be contributing to the difference between the calculated and measured values. These are discussed on the following pages.

Communicating the Qualitative and Quantitative in Museum Daylighting

Kristen N. Garibaldi

2017 INTERNATIONAL RADIANCE WORKSHOP PORTLAND, OREGON AUGUST 23, 2017

ARUP

• It is difficult to measure direct and diffuse illuminance (irradiance) separately.

\$200 1" diameter 2 ounces

\$6,000 6" diameter 2 lbs But...

236 Folders

> My Computer - N-YLTCND7174M1Y > Desktop > weather files > SAMSON (US)

^	Name	Date modified	Туре
	24284	11/16/2017 5:05 PM	File folder
- E	25308	11/16/2017 5:05 PM	File folder
	25339	11/16/2017 5:05 PM	File folder
	25501	11/16/2017 5:05 PM	File folder
	25503	11/16/2017 5:05 PM	File folde
	25624	11/16/2017 5:05 PM	File folde
	25713	11/16/2017 5:05 PM	File folde
	26411	11/16/2017 5:05 PM	File folde
	26415	11/16/2017 5:05 PM	File folde
-	26425	11/16/2017 5:05 PM	File folde
	26451	11/16/2017 5:05 PM	File folde
	26510	11/16/2017 5:05 PM	File folde
	26528	11/16/2017 5:05 PM	File folde
	26533	11/16/2017 5:05 PM	File folde
	26615	11/16/2017 5:05 PM	File folde
	26616	11/16/2017 5:05 PM	File folde

30 Files per Folder

Clipboard	Organiz	e	New		
🚽 🗧 My Computer - N-YL1	ICND7174M1Y > De	sktop > weather	files ⇒ SAMS	ion (US) →	93193
 Name 	~	Date	modified	Туре	

255	🕒 93193_61.Z	7/28/1993 3:38 AM	z Archive
	💶 93193_62.Z	7/28/1993 3:38 AM	z Archive
nts 🖈	🔛 93193_63.Z	7/28/1993 3:39 AM	z Archive
ds ∦*	🔛 93193_64.Z	7/28/1993 3:39 AM	z Archive
1	🔛 93193_65.Z	7/28/1993 3:39 AM	z Archive
ents 🖈	🔛 93193_66.Z	7/28/1993 3:40 AM	z Archive
*	🖽 93193_67.Z	7/28/1993 3:40 AM	z Archive
	🔛 93193_68.Z	7/28/1993 3:41 AM	z Archive
	🖼 93193_69.Z	7/28/1993 3:41 AM	z Archive
	🖼 93193_70.Z	7/28/1993 3:41 AM	z Archive
ting 🖈	🖼 93193_71.Z	7/28/1993 3:42 AM	z Archive
- 1	🖼 93193_72.Z	7/28/1993 3:42 AM	z Archive
5	🗳 93193_73.Z	7/28/1993 3:42 AM	z Archive
	03103 74 7	7/28/1003 3/43 AM	7 Archive

1 header row (same for 30 files)

≣ 26451_67 ×

264	51	ANC	IOR.	AGE			AK	(-10	N61	10	W	150	01	. 35	;									
67	1	1	1	Θ	0	Ø	99	0 ?	0	0	9	9	9	-8.3	-9.4	92	996	10	1.5	24.1	910 09999999999	699999.	41	0
67	1	1	2	0	0	Ø	20	0?	0	0	20	10	10	-6.7	-8.9	84	996	0	.0	24. 1	760 0999999999	699999.	41	0
67	1	1	з	0	0	0	20	0?	0	0	20	10	10	-7.2	-8.9	88	996	0	.0	24.1	700 09999999999	699999.	41	0
67	1	1	4	0	0	0	20	0?	0	9	99	10	10	-6.7	-8.9	84	996	0	.0	24.1	700 09999999999	699999.	41	Θ
67	1	1	5	0	0	Ø	20	0 ?	0	0	99	8	7	-6.7	-8.3	88	9 95	30	2.1	24.1	2740 09999999999	699999.	41	Θ
67	1	1	6	θ	0	0	20	0?	0	0	9	7	6	-8.9	-10.0	92	995	0	.0	24.1	2740 09999999999	699999.	41	0
67	1	1	7	Θ	0	0	20	0 ?	0	0	9	9	8	-10.0	-12.8	80	995	0	.0	24.1	1220 0999999999	699999.	41	0
67	1	1	8	0	0	0	20	0?	0	0	20	10	10	-8.9	-11.1	84	995	360	1.5	24. 1	1220 0999999999	699999.	41	0
67	1	1	9	0	0	0	20	0?	0	0	20	10	10	-8.9	-10.5	88	996	0	.0	72.4	1520 09999999999	699999.	41	0
67	1	1 :	10	37	802	0	G5	1 G	4	0 (65	10	10	-4.4	-6.7	85	996	280	2.1	80.5	1680 0999999999	6.059	41	Θ
67	1	1 :	11	96	1415	25	G5	5 G	4 2	.5 (65	10	10	-6.1	-7.8	88	996	280	1.5	24.1	1680 0999099999	6.059	41	Θ
67	1	1 :	12	139	1415	30	G5	5 G	4 2	.9 (65	10	10	-6.1	-7.2	92	996	100	2.1	32.2	1680 0999099999	6.059	41	0
67	1	1 :	13	142	1415	56	G5	5 G	4 5	6	65	10	10	-5.6	-7.2	88	995	110	.5	12.9	1220 0999099999	6.059	41	0
67	1	1 :	14	102	1415	37	G5	2 G	4 3	6 (i5	10	10	-5.6	-7.2	88	995	0	. 0	8.0	180 0999099999	6 .059	41	0
67	1	1 :	15	42	943	6	G5	0 G	4	6 (55	10	10	-5.6	-7.2	88	994	320	1.5	6.4	210 0999099999	6.059	41	0
67	1	1 :	16	0	0	0	20	0 ?	0	9	99	10	10	-5.6	-7.2	88	994	350	2.1	2.4	240 0999099999	699999.	41	Θ
67	1	1 :	17	0	0	0	20	0 ?	0	0	99	10	10	-5.6	-7.2	88	993	340	1.0	3.2	430 0999099999	699999.	41	0

8760 rows of data, around 10 relavent columns

62 million total rows

Machine Learning!

- "the science and art of programming computers so they can learn from data." (Geron)
- Machine learning uses data to "learn" and predict outcomes rather than using explicit algorithms or rules, and works well for problems that have no known algorithm based solution, but have lots of available data to learn from.

O'REILLY°

When to use machine learning:

- 1. Tasks involve a function that maps well-defined inputs to well-defined outputs
- 2. Large (digital) datasets exist or can be created containing input-output pairs
- 3. Tasks provide clear feedback with clearly definable goals and metrics
- 4. No long chains of logic or reasoning that depend on diverse background knowledge or common sense
- 5. Tasks do not require detailed explanations for how the decision was made
- 6. Tasks have a tolerance for error and no need for provably correct or optimal solutions
- 7. The phenomenon or function being learned should not change rapidly over time
- 8. No specialized dexterity, physical skills, or mobility is required

From "What Can Machine Learning Do? Workforce Implications" Erik Brynjolfsson and Tom Mitchell, Science Magazine, Dec 22, 2017

Hypothesis

- Data normally used:
 - Month
 - Day
 - Hour
 - Latitude
 - Longitude
 - Direct Illuminance (DIR)
 - Diffuse Illuminance (DIF)
- Data we also have:
 - Global Illuminance (GLOB)

DIR + DIF = GLOB

Hypothesis

- Data normally used:
 - Month
 - Day
 - Hour
 - Latitude
 - Longitude
 - Direct Illuminance (DIR)
 - Diffuse Illuminance (DIF)
- Data we also have:
 - Global Illuminance (GLOB)

- If we have:
 - -Month
 - -Day
 - -Hour
 - -Latitude
 - -Longitude
 - -Global Illuminance (GLOB)
- Can we predict:
 - -Direct Illuminance (DIR)
 - -Diffuse Illuminance (DIF)

Tools

С	JupyterLab	× +																				-		×
←	→ C ① localhos	st:8888/lab															☆	1	0	G	S	¥ 📢	Μ	:
Ċ	File Edit View Run Ke	rnel Tabs Settin	gs Help																					
Files	+ 🗈 1	D C	extract.ipynb	×	ingest.ipyn	b ×	Markdown	,														Pvt	hon 3	0
	fi Namo	Last Modified			-	-																. ,.		
bui	Name -	Last Modified		Step 2	2 - Extra	actin	o data i	n a	ma	nner	read	dv to	o use											
Runn		a year ago					gaata																	
	handson	a month ago		The Pyth	non Data A	Analysis	Library (pa	ndas) has i	functio	ns spe	cifica	lly to quer	y and exti	ract da	ata from	I SQL	datab	bases in	a dat	a structu	re. The		
8	images	a vear ago		function	below que	eries tr	ne first 12 ro	ows w	vhere	solar a	Ititude	e is gre	eater than	zero and	the st	ate is 'N	IY'.							
man	markdown-pdf	a vear ago	In [24]:	conn =	sqlite3.	.conne	ect("weath	ner_d	latab	ase.d	b")													
Cor	🗖 model	a year ago																						
	superseded	a year ago	In [29]:	df = po	d.read_so	ql_que	ery("SELEC	CT *	FROM	weat	herda	ta Wł	HERE sola	ar_altit	ude :	> 0 ANI) sta	te =	'NJ'	LIMI	T 12;",	conn)		
ols 0	🖿 weatherdata info	a year ago	In [30]:	df																				
ell To	• 🗔 extract.ipynb	2 months ago	0+[30].	stati	on id	city	state time	one	lat	long	cm.	alay	iulian dav	vearbou		month	yeb	hour	aloh k	oriz	dir norm	dif bori	z dir b	
Ö	• 🖪 ingest.ipynb	6 months ago	000[30].	o	14724	MADY	state timez	5.0	40.7	74.17	75.0	0.0	Junan_uay	ycaniou		1	uay	nour	giob_ii	7.0	un_nonn	un_non		
s	📕 model.ipynb	a year ago		U	14/34 NEV	WARK	NJ	-5.0	40.7	/4.1/	75.0	9.0	1	2	s		1	8		7.0	5.0	0.	J	
B	📃 predict.ipynb	a year ago		1	14734 NEV	NARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	9)	1	1	9		31.0	4.0	31.)	
	🗋 2018-08-13 data analyt	a year ago		2	14734 NEV	WARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	10)	1	1	10		68.0	6.0	66.	0	
	🗅 data_analytics-individu	a year ago		3	14734 NEV	WARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	11		1	1	11		68.0	2.0	68.	D	
	🗅 data_analytics-individu	a year ago		4	14734 NEV	WARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	12	2	1	1	12		89.0	7.0	86.	0	
	🕒 IES rp-21-84 Daylight A	17 years ago		5	14734 NEV	NARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	13	3	1	1	13	1	20.0	7.0	117.	0	
	masters.docx	2 years ago		6	14734 NEV	NARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	14	i	1	1	14		83.0	5.0	81.	0	
	process-rev.pdf	a year ago		7	14734 NEV	NARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	15	5	1	1	15	1	07.0	1.0	106.	0	
	process.pdf	a year ago		8	14734 NEV	NARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	16	5	1	1	16		53.0	1.0	53.	0	
	🗅 process.xml	a year ago		Q	14734 NEV	NARK	NI	-5.0	40.7	74 17	75.0	9.0	2	30	,	1	2	8		27.0	123.0	15	0	
	submissoin record.pdf	a year ago		10	14734 NEV	MARK	NI	-5.0	40.7	74.17	75.0	0.0	2	20		1	2	0	1	21.0	//0.0	10	0	
	ne sunpos.py	a year ago		44	14704 NEV		NU NU	-5.0	40.7	74.17	75.0	5.0	2	20		4	2	9	-	20.0	449.0	45.		
					14/54 INEV	MARK	U	-5.0	40.7	74.17	75.0	9.0	2	34	• •••	1	2	10	2	29.0	437.0	98.	, 1	
																								T

40 million 10 04 million

Part 1 – Get data into useable format

- Unzip data files
 - Each group of 30 files within its own folder
- Add in header data to each line
 - -Add lat/long info based on day/time/location
- Read into database

	24036	65 -	Note	pad
--	-------	------	------	-----

File	Edit	Fo	rmat	View	Help																						
24	036	LEW	ISTO	ΝN			M	IT -8	3 N4	7 03	1	v10 9	27	7 1264	1												
65	1	1	1	0	0	0	20	0	20	0	?0	7	5	-10.4	9999.	78	867	9999	9999	.999	999.	999999	99999999999	59	9999.	15	1
65	1	1	2	0	0	0	20	0	?0	0	?0	5	2	-11.1	-15.0	73	868	240	7.	7 3	32.2	2 77777	09999999999	59	9999.	15	1
65	1	1	3	0	0	0	20	0	?0	0	?0	3	1	-11.3	9999.	72	868	9999	9999	.999	999.	999999	99999999999	59	9999.	15	1
65	1	1	4	0	0	0	20	0	?0	0	?0	2	1	-11.5	9999.	70	869	9999	9999	.999	999.	999999	99999999999	59	9999.	15	1
65	1	1	5	0	0	0	20	0	?0	0	?0	0	0	-11.7	-16.1	69	869	240	8.8	8 3	32.2	2 77777	09999999999	59	9999.	15	1
65	1	1	6	0	0	0	20	0	?0	0	?0	0	0	-12.2	9999.	68	869	9999	9999	.999	999.	999999	99999999999	49	9999.	15	1
65	1	1	7	0	0	0	20	0	?0	0	?0	0	0	-12.8	9999.	67	870	9999	9999	.999	999.	999999	99999999999	49	9999.	15	1
65	1	1	8	90 1	179	39	G5	309	G4	16	G5	0	0	-13.3	-18.3	66	870	220	7.	78	80.5	5 77777	09999999999	4	.035	15	1
65	1	1	9 3	249 1	415	134	H5	513	H4	43	H5	3	1	-12.8	9999.	65	870	9999	9999	.999	999.	999999	99999999999	4	.035	15	1
65	1	1	10 3	381 1	415	253	H4	630	H4	83	H5	5	2	-12.2	9999.	65	871	9999	9999	.999	999.	999999	99999999999	4	.035	15	1
65	1	1	11 4	461 1	415	297	G5	533	G4	123	G5	8	3	-11.7	-17.2	64	871	150	1.	58	80.5	5 77777	09999999999	4	.035	15	1
65	1	1	12 4	482 1	415	298	H6	447	H6	146	H6	9	5	-10.0	9999.	62	870	9999	9999	.999	999.	999999	99999999999	5	.035	15	1
65	4	4	45	110 1	44 E	220	uс	340	uс	100	цε	0	6	0 /	0000	64	070	0000	0000	000	000	000000	00000000000	E	0.25	4 0	4

	julian_day	yearhour	month	day	hour	glob_horiz	dif_horiz	solar_altitude	solar_azimuth
0	1	8	1	1	8	7.0	6.0	5.44	-53.16
1	1	9	1	1	9	10.0	21.0	13.83	-42.02
2	1	10	1	1	10	69.0	65.0	20.46	-29.34
3	1	11	1	1	11	173.0	173.0	24.77	-15.12
4	1	12	1	1	12	122.0	121.0	26.26	0.09

In [24]: conn = sqlite3.connect("weather_database.db")

In [29]: df = pd.read_sql_query("SELECT * FROM weatherdata WHERE solar_altitude > 0 AND state = 'NJ' LIMIT 12;", conn)

In [30]: df

Out[30]:		station_id	city	state	timezone	lat	long	sm	elev	julian_day	yearhour	 month	day	hour	glob_horiz	dir_norm	dif_horiz	dir_horiz	skycover	solar_altitude	solar_azimuth
	0	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	8	 1	1	8	7.0	5.0	6.0	1.0	10.0	5.37	-53.30
	1	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	9	 1	1	9	31.0	4.0	31.0	0.0	10.0	13.79	-42.20
	2	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	10	 1	1	10	68.0	6.0	66.0	2.0	10.0	20.46	-29.54
	3	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	11	 1	1	11	68.0	2.0	68.0	0.0	10.0	24.81	-15.33
	4	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	12	 1	1	12	89.0	7.0	86.0	3.0	10.0	26.34	-0.11
	5	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	13	 1	1	13	120.0	7.0	117.0	3.0	10.0	24.85	15.12
	6	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	14	 1	1	14	83.0	5.0	81.0	2.0	10.0	20.54	29.34
	7	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	15	 1	1	15	107.0	1.0	106.0	1.0	10.0	13.90	42.02
	8	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	1	16	 1	1	16	53.0	1.0	53.0	0.0	10.0	5.50	53.15
	9	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	2	32	 1	2	8	27.0	123.0	15.0	12.0	1.0	5.36	-53.43
	10	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	2	33	 1	2	9	121.0	449.0	43.0	78.0	1.0	13.80	-42.33
	11	14734	NEWARK	NJ	-5.0	40.7	74.17	75.0	9.0	2	34	 1	2	10	229.0	437.0	98.0	131.0	4.0	20.49	-29.67

12 rows × 21 columns

From https://vas3k.com/blog/machine learning/?ref=hn

From https://vas3k.com/blog/machine learning/?ref=hn

Part 2 – Create machine learning model

Part 2 – Create machine learning model

Part 2 – Select train, validate model

1. Supervised learning

1.1. Generalized Linear Models

- 1.1.1. Ordinary Least Squares
 - 1.1.1.1. Ordinary Least Squares Complexity
- 1.1.2. Ridge Regression
 - 1.1.2.1. Ridge Complexity
 - 1.1.2.2. Setting the regularization parameter: generalized Cross-Validation
- 1.1.3. Lasso
 - 1.1.3.1. Setting regularization parameter
 - 1.1.3.1.1. Using cross-validation
 - 1.1.3.1.2. Information-criteria based model selection
 - 1.1.3.1.3. Comparison with the regularization parameter of SVM
- 1.1.4. Multi-task Lasso
- 1.1.5. Elastic-Net
- 1.1.6. Multi-task Elastic-Net
- 1.1.7. Least Angle Regression
- 1.1.8. LARS Lasso
 - 1.1.8.1. Mathematical formulation
- 1.1.9. Orthogonal Matching Pursuit (OMP)
- 1.1.10. Bayesian Regression
 - 1.1.10.1. Bayesian Ridge Regression
 - 1.1.10.2. Automatic Relevance Determination ARD
- 1.1.11. Logistic regression
- 1.1.12. Stochastic Gradient Descent SGD
- 1.1.13. Perceptron
- 1.1.14. Passive Aggressive Algorithms
- 1.1.15. Robustness regression: outliers and modeling errors
 - 1.1.15.1. Different scenario and useful concepts
 - 1.1.15.2. RANSAC: RANdom SAmple Consensus
 - 1.1.15.2.1. Details of the algorithm
 - 1.1.15.3. Theil-Sen estimator: generalized-median-based estimator
 - 1.1.15.3.1. Theoretical considerations
 - 1.1.15.4. Huber Regression
 - 1.1.15.5. Notes
- 1.1.16. Polynomial regression: extending linear models with basis functions

1.2. Linear and Quadratic Discriminant Analysis

- 1.2.1. Dimensionality reduction using Linear Discriminant Analysis
- 1.2.2. Mathematical formulation of the LDA and QDA classifiers
- 1.2.3. Mathematical formulation of LDA dimensionality reduction
- 1.2.4. Shrinkage
- 1.2.5. Estimation algorithms

1.3. Kernel ridge regression

1.4. Support Vector Machines

- 1.4.1. Classification
 - 1.4.1.1. Multi-class classification
 - 1.4.1.2. Scores and probabilities
 - 1.4.1.3. Unbalanced problems
- 1.4.2. Regression
- 1.4.3. Density estimation, novelty detection
- 1.4.4. Complexity
- 1.4.5. Tips on Practical Use
- 1.4.6. Kernel functions
 - 1.4.6.1. Custom Kernels
 - 1.4.6.1.1. Using Python functions as kernels
 - 1.4.6.1.2. Using the Gram matrix
 - 1.4.6.1.3. Parameters of the RBF Kernel
- 1.4.7. Mathematical formulation
 - 1.4.7.1. SVC
 - 1.4.7.2. NuSVC
 - 1.4.7.3. SVR
- 1.4.8. Implementation details

1.5. Stochastic Gradient Descent

- 1.5.1. Classification
- 1.5.2. Regression
- 1.5.3. Stochastic Gradient Descent for sparse data
- 1.5.4. Complexity
- 1.5.5. Stopping criterion
- 1.5.6. Tips on Practical Use
- 1.5.7. Mathematical formulation
 - 1.5.7.1. SGD
- 1.5.8. Implementation details

1.6. Nearest Neighbors

- 1.6.1. Unsupervised Nearest Neighbors
 1.6.1.1. Finding the Nearest Neighbors
 - 1.6.1.2. KDTree and BallTree Classes
- 1.6.2. Nearest Neighbors Classification
- 1.6.3. Nearest Neighbors Regression
- 1.6.4. Nearest Neighbor Algorithms
 - 1.6.4.1. Brute Force
 - 1.6.4.2. K-D Tree
 - 1.6.4.3. Ball Tree
 - 1.6.4.4. Choice of Nearest Neighbors Algorithm

8. Cross decomposition

1.9.1. Gaussian Naive Bayes

1.9.4. Bernoulli Naive Bayes

1.10.3. Multi-output problems

1.10.5. Tips on practical use

11. Ensemble methods

1.11.3. AdaBoost

1.11.2.

1.10.7. Mathematical formulation

1.11.1. Bagging meta-estimator

1.9.2. Multinomial Naive Bayes

1.9.3. Complement Naive Bayes

1.9.5. Out-of-core naive Bayes model fitting

1.10.6. Tree algorithms: ID3. C4.5. C5.0 and CART

• 1.10.7.1. Classification criteria

• 1.10.7.2. Regression criteria

1.11.2.1. Random Forests

• 1.11.2.3. Parameters

• 1.11.3.1. Usage

1.11.4. Gradient Tree Boosting

1 11 2 4 Parallelization

• 1.11.4.1. Classification

• 1.11.4.6. Regularization

• 1.11.4.7. Interpretation

1.11.5. Voting Classifier

• 1.11.4.2. Regression

1.11.2.2. Extremely Randomized Trees

• 1.11.2.5. Feature importance evaluation

1.11.4.3. Fitting additional weak-learners

1.11.4.5.1. Loss Functions

1.11.4.6.1. Shrinkage

1.11.5.3.1. Usage

1.11.4.6.2. Subsampling

• 1.11.4.7.1. Feature importance

1.11.5.1. Majority Class Labels (Majority/Hard Voting)

 1.11.5.1.1. Usage
 1.11.5.2. Weighted Average Probabilities (Soft Voting)
 1.11.5.3. Using the votingclassifier with cridsearchcy

• 1.11.4.4. Controlling the tree size

1.11.4.5. Mathematical formulation

1.11.2.6. Totally Random Trees Embedding

9. Naive Bayes

10. Decision Trees

1.10.1. Classification

1.10.2. Regression

1.10.4. Complexity

- 1.6.4.5. Effect of leaf_size
 1.6.5. Nearest Centroid Classifier
- 1.6.5. Nearest Centroid Classifier
 1.6.5.1. Nearest Shrunken Centroid
- 1.6.6. Neighborhood Components Analysis
 - Neighborhood Components
 1.6.6.1. Classification
 - 1.6.6.1. Classification
 1.6.6.2. Dimensionality reduction
 - 1.6.6.2. Dimensionality reduction
 1.6.6.3. Mathematical formulation
 - 1.6.6.3.1 Mathematical formulation
 1.6.6.3.1 Mahalanobis distance
 - 1.6.6.4. Implementation
 - 1.6.6.5. Complexity
 - 1.6.6.5.1. Training
 - 1.6.6.5.2. Transform

1.7. Gaussian Processes

1.7.1. Gaussian Process Regression (GPR)

1.7.5. Kernels for Gaussian Processes

• 1.7.5.2. Basic kernels

1.7.5.5. Matérn kernel

1.7.5.9. References

• 1.7.5.3. Kernel operators

1.7.2. GPR examples

1.7.4. GPC examples

- 1.7.2.1. GPR with noise-level estimation
- 1.7.2.2. Comparison of GPR and Kernel Ridge Regression
- 1.7.2.3. GPR on Mauna Loa CO2 data

• 1.7.4.1. Probabilistic predictions with GPC

1.7.5.1. Gaussian Process Kernel API

• 1.7.5.6. Rational guadratic kernel

1.7.5.7. Exp-Sine-Squared kernel

1.7.5.8. Dot-Product kernel

1.7.5.4. Radial-basis function (RBF) kernel

1.7.4.2. Illustration of GPC on the XOR dataset

1.7.4.3. Gaussian process classification (GPC) on iris dataset

1.7.3. Gaussian Process Classification (GPC)

Results – Annual Hourly

Results – Annual Hourly – 12p.m. only

Actual Diffuse Horizontal Predicted Diffuse Horizontal 500 400 . Diffuse Horizontal Illuminance 200 100 2000 4000 6000 8000 0 Year Hour

Actual vs Predicted Diffuse Horizontal Illuminance

Analysis with Predicted Data - sDA

Analysis with Predicted Data - Cumulative

But wait! Aren't there already ways to do this?

Existing Models

- Erbs et al., 1982 (ER)
- Orgill and Hollands, 1977 (OH)
- Reindl et al., 1990 (RE)
- Lam and Li, 1996 (LL)
- Skarteveit and Olseth, 1987 (SO)
- Louche et al., 1991 (LO)
- Maxwell, 1987 (MA)
- Vignola and McDaniels, 1984 (VM)

Sokol Dervishi and Ardeshir Mahdavi. Computing diffuse fraction of global horizontal solar radiation: A model comparison. Solar Energy, 2012

Error Metrics

- Mean Bias Deviation (MBD)
- Relative Error (RE)
- Root Mean Squared Deviation (RMSD, RMSE)

Error Metrics – MBD and RMSD

Model	MBD (%)	RMSD (W/m ⁻²)
ER	-9.2	37.4
RE	-10.5	41.6
ОН	-13.3	43.1
LL	11.9	45.7
SO	-98.3	199.9
LO	19.5	29.6
MA	21.1	33.2
VM	-60.38	50.4

Error Metrics – MBD and RMSD

Model	MBD (%)	RMSD (W/m ⁻²)
ER	-9.2	37.4
RE	-10.5	41.6
OH	-13.3	43.1
LL	11.9	45.7
SO	-98.3	199.9
LO	19.5	29.6
MA	21.1	33.2
VM	-60.38	50.4
ML	-5.87	35.32

Error Metrics – Relative Error CDF

Relative Error CDF

Relative Error %

Takeaways

- Solution looks promising needs more development
 - -ML trained on only one NY weather station, ~131,000 measurements
 - -62M measurements in data set
 - Does using more than one weather station improve results, ie within a radius of target location where similar climate conditions are expected?
 Does using all 236 weather stations improve results?
- Databases are very useful!
- Python/Jupyter environment worked well for this type of development.

Thank you!

77 Water Street New York, NY 10005

matt.franks@arup.com

 \mathcal{Y}

+1 212 896 3000

