What's New in Radiance 5.3

Greg Ward, Anyhere Software

Bug Fixes & Incidental Improvements

- Object picking in **rvu** now ignores transparent surfaces
- Fixed issue with large file handling in **rcollate**
- Output series now indexed from 0 in dctimestep
- Improvements to bsdf2klems accuracy
- Added min() and max() functions to .cal library
- Added functionality to getinfo with -d and +d
- Improved performance of **rmtxop** program
- Added automatic byte-swapping for float/double

More Significant Additions

- Created **radcompare** program as part of larger effort to include unit testing in automatic builds
- Added **rtrace** -orxRX options to separate reflected
 and unreflected radiance values and distances
- Created rsplit program to compliment rlam and enable layered image storage with enhanced rtpict
- Created rcode_depth, rcode_norm, rcode_ident, and rcode2bmp conversion tools to support new depth, normal, and identifier file formats
- Added gendaymtx A option to produce average sky vectors

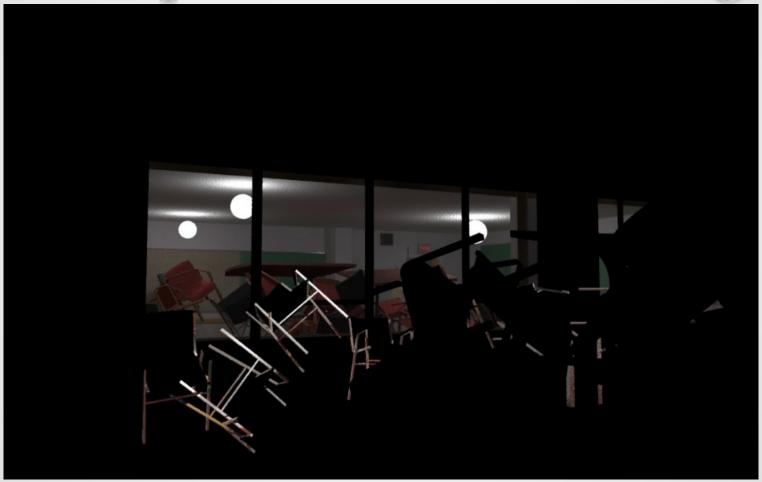
New radcompare Utility

- Takes two Radiance files and determines
 equivalence
- Identifies floating-point values and allows for some discrepancy within specified tolerances
- Smart about ignoring white space and identifying numerical data in text files
- Understands most Radiance-specific binary files
 - Reads information headers and looks for differences there as well
 - Some files types compared as binary, not allowing for discrepancies
 - octrees, triangle meshes, ID maps, scattering interpolants
- Provides robust regression testing by allowing variation in results, especially important for HDR image comparison

Simple radcompare Examples

rmtxop -ff -c .3 .9 .2 test.mtx -c .7 .2 .3 -t test.mtx > rmtxop.mtx
radcompare ref/rmtxop.mtx rmtxop.mtx
radcompare: warning - headers are different lengths

rmtxop -v -ff -c .3 .7 .2 test.mtx -c .7 .2 .3 -t test.mtx > rmtxop2.mtx radcompare -v ref/rmtxop.mtx rmtxop2.mtx radcompare: warning - headers are different lengths radcompare: input file type is float radcompare: comparing inputs as 32-bit IEEE floats radcompare: relative RMS difference between 'ref/rmtxop.mtx' and 'rmtxop2.mtx' of 0.011296 exceeds limit of 0.01


New rtrace -orxRX output

- -or outputs reflected radiance component
- -ox outputs unreflected radiance component
- –oR outputs reflected distance
- –ox outputs unreflected distance
- -ov is always the sum of -or and -ox
- Effective depth (-o1) is either -oR or -oX depending on more significant radiance component
- New options are not compatible with -I+ or -i+

Standard rtrace -ov Image

Example rtrace -or Image

Example rtrace -ox Image

New rsplit utility

- Acts like inverse to rlam
 - Rather than pulling data together into a single stream, it splits it apart
- Most useful for separating output from rtrace into component files
- Example to save image and z-buffer from **rtrace**:

- The initial float value for each pixel is the depth, and each one is written in binary to the file "depth.zbf", which has no header
- The next three float values are the RGB radiance, and are sent to stdout with the header and resolution to be converted by **pvalue**

New Radiance File Types

- We can now split all the outputs from **rtrace**, but do we want to store them as 32-bit/component floats?
- The **rcode_depth** utility encodes and decodes 16bit depth values that have better characteristics than short-integer or half-float representations
- The **rcode_norm** utility encodes and decodes 32-bit normal vectors that take 1/3 as much space as floats while still providing excellent precision
- The **rcode_ident** utility uses an indexed format for storing string identifiers (e.g., material names)
- Layered image output is now supported by **rtpict**

Why Layered Images?

- Sometimes referred to as "deep pixels," layered image formats provide a way to store more than just RGB color; OpenEXR is a good example
- Efforts began with Rob Shakespeare and Bill Thompson to support their low-vision analysis work
- Initially, we planned to make an enhanced HDR format to add depth, world position, and surface normals to cloud-shared Radiance renderings
- Realized that a single-file deep pixel format would break the Unix toolbox model that has served us so well, but there was another way....

The **rtpict** tool (1)

- Last year, I created the Perl script rtpict to run wwrays with rtrace (as others have done) to get something like rpict with multiprocessing
- Adding support for layered image output was relatively straightforward, e.g.:
 - o rtpict -n 4 -ovLn layered -vf view octree
- The above command writes 3 separate files in the directory "layered":
 - o radiance.hdr
 - d_firstsurf.dpt
 - o perturbed.nrm
- a flattened HDR image for this view
- 16-bit encoded first intersection depths
- 32-bit encoded surface normals at each pixel

The **rtpict** tool (2)

- Layer files are always given the same name and are uncompressed to facilitate random access
 - Standard compression tools generally do better than compressed formats

rtpict -o options and output files

v	radiance.hdr
r	r_refl.hdr
Х	r_unrefl.hdr
l	d_effective.dpt
L	d_firstsurf.dpt
R	d_refl.dpt
Х	d_unrefl.dpt
n	perturbed.nrm
Ν	unperturbed.nrm
S	surface.idx
m	modifier.idx
М	material.idx

rtpict Subtlelties

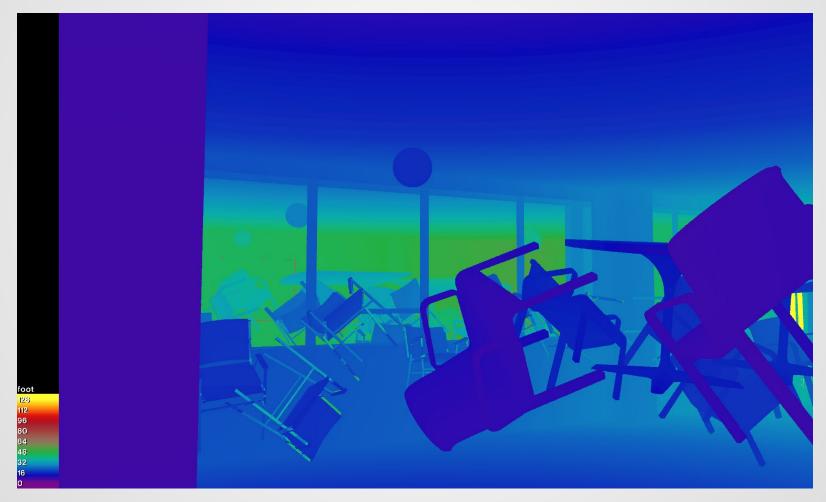
- Replicates **rpict** parameters and defaults, except:
 - o -r, -ro, -S, -P, and -PP are unsupported
 - o -t, -ps, -pt, -pd, and -pm are silently ignored
- Results may look better with -u+ sampling
- Some -o* options are not supported
 - Avoid -otTwVWcp (trace, weight, contribution, coefficient, (u,v) coordinates, intersection point)
 - Intersection point is supported indirectly by rcode_depth
- Using -i+ with -ov writes "irradiance.hdr"
- Add to existing layers by re-using output directory
 Recommend setting -pj 0 in this case
- Include -d ref/unit when encoding depth layer(s)
- No tiny source sampling on image plane
 Little-know feature of **rpict** avoids some aliasing artifacts

Details of rcode_depth

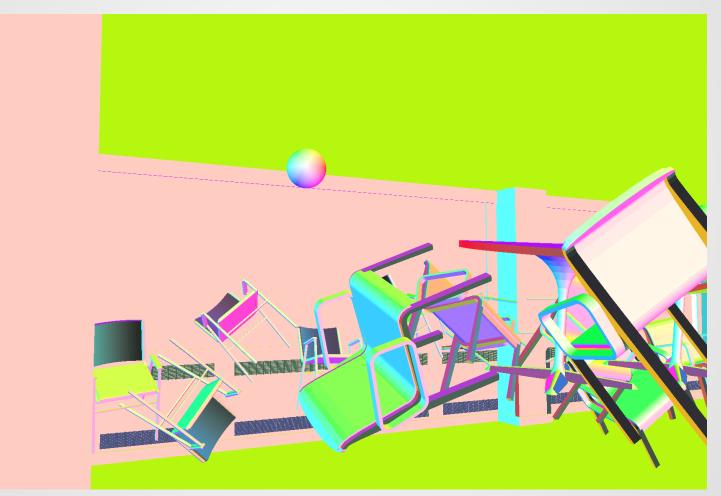
- Uses a 16-bit hybrid linear/reciprocal encoding
 - Similar to linear/log depth encoding in holodeck
 - \circ Explicit 0 and \sim representations
- Specify a reference depth approximating the "far" distance in local scene
 - Indicates cross-over between linear and reciprocal encoding
 - Defaults to 1.0 in anonymous units
 - Codes -32768 to -1 cover linear range from 0 to reference depth
 - Codes 0 to 32767 cover reciprocal range from reference to ∞
- Option -d ref_dist/unit includes distance units
 rtrace -oL -x xr -y yr octree | rcode_depth -d 8/meter > L.dpt
- View parameters stored in header enable rcode_depth to decode world intersection points

Details of **rcode_norm**

- Uses same 32-bit normal encoding as ambient files
 o Implementation in src/common/dircode.c
- Average error ~8 seconds of arc
 - Maximum error is 21 seconds of arc
- Takes 1/3 as much space as raw float normals

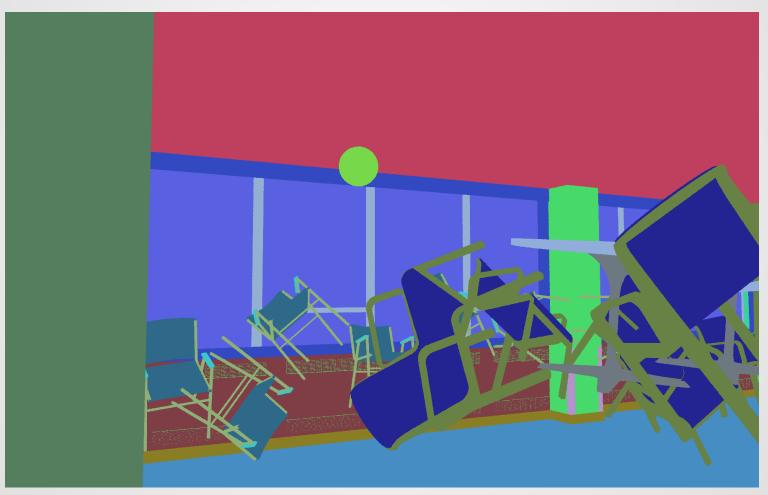

Details of **rcode_ident**

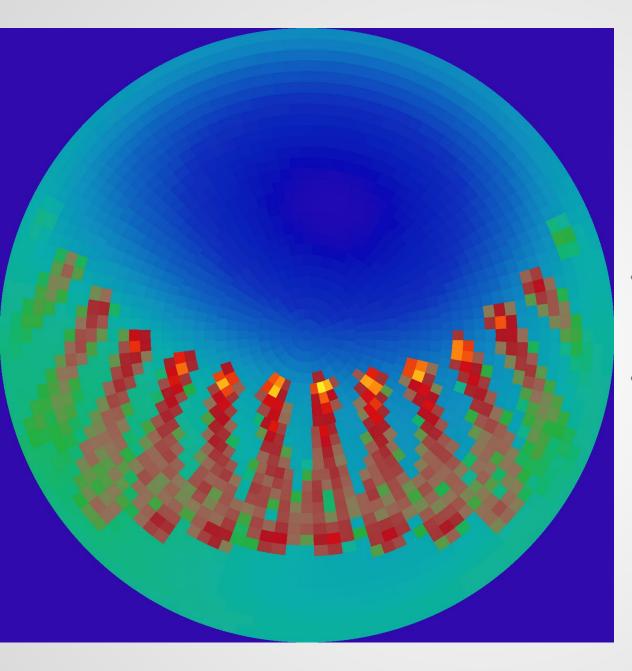
- Creates index table with identifiers encountered on input
- Index width can be 8, 16, or 24 bits
 - Corresponds to maxima of 256, 64K, or 16M unique identifiers
 - **rtpict** always uses 16-bit index
- Like other rcode formats, files are uncompressed, but compress very well using **gzip** or similar


Related rcode2bmp Tool

- Takes a list of depth, normal, and identifier files and produces BMP images for quick visualization
- Perl script uses a different trick for each data type
 - Depths are visualized by calling **falsecolor**
 - Normals use a HSV color wheel encoding relative to view direction
 - Identifiers are assigned random colors
- Also handles HDR files, calling ra_bmp -e auto

Effective Depth Visualiztion




Unperturbed Surface Normals

Darker normals are facing away from camera (reversed)

Material IDs

New option: gendaymtx -A

- Averages sky patch values over entire weather tape
- Useful in PV exposure analysis and other applications

Other Happenings...

- Rob Guglielmetti no longer at NREL, but working to produce a new set of installers all the same
 NREL servers will continue hosting distro for time being
- Official 5.3 release likely in the next month or so
 Just need to roll it out -- not waiting for anything in particular
- Hope to continue working on unit testing
 - Tests in place for renderers, most generators, and a few utilities
 - Much work left to be done -- funding priorities make it slow going
- Nathaniel Jones has a new annual glare simulation
 - Look forward to learning more about it this afternoon

¿Questions?

. . .