
Using Cloud Compute Services for
Radiance Simulations
Andy McNeil

Disclaimers

• This presentation is offered with no warranty, use at your own risk.
• Andy is a hobbyist at best. Consult a network security expert for

much better advice regarding security than what you’re about to
receive.

• There is likely a better way to do everything I’m going to show you.

There is no cloud.
It’s just someone else’s computer.

shhhh…

Why use someone else’s computer?

• Computing resources scale with needs
• Add and drop instances as your workload changes

• No need to coordinate with coworkers for running jobs

• Zero up front cost | Hello Freelancers!
• Track costs by project and bill computing expense to client
• Use Linux-only Radiance features without having to get a linux /

mac computer

Andy’s experience in 2015-2016

• 11 months
• $900
• 69,028 CPU hours 

(equivalent to 8.5 constantly running
CPUs)

• 160+ CPUs running for short
periods

• Zero CPUs most of the time

Who’s Computer?

• AWS (Amazon)
• Azure (Microsoft)
• Google Cloud
• IBM Cloud
• Cloud & Heat - Distributed mini data centers that also provide heat to

buildings

• And lots more…

Considerations - just a lazy list

• Access
• Storage
• Instance Configurations
• Computing Costs
• Spot / Low-Priority / Preemptible offering
• Your employer’s preference (and your client’s preference)

I chose

• It was 2015 - AWS was the leader in cloud services
• Now things are pretty even between biggest cloud providers 

(but I still use AWS ‘cause I’m an old dog)

Getting Started with AWS in Twenty-one Easy Steps!

1. Create an AWS account

2. Choose a Region

3. Generate a key pair

4. Set up a security group

5. Choose spot or reserved instance

6. Select an instance type

7. Select a machine image

8. Launch instance

9. Connect to your instance

10. Install software

11. Save a machine image

12. Create persistent file storage

13. Mount persistent file storage

14. Upload Radiance model files

15. Start simulation

16. Set an alarm to terminate instance when
simulation finishes

17. Launch an instance to retrieve results from
file storage

18. Download results

19. Terminate instance

20. Get your cloud expenses and invoice your
client

21. Bask in the glory of a job well done

AWS Regions

• Choose a region based on proximity and cost.
• N. California is the most expensive of the US regions, and

typically the last to get new features.

US East (Ohio)
US East (N. Virginia)
US West (N. California)
US West (Oregon)
Asia Pacific (Hong Kong)
Asia Pacific (Mumbai)
Asia Pacific (Osaka-Local)
Asia Pacific (Seoul)
Asia Pacific (Singapore)
Asia Pacific (Sydney)
Asia Pacific (Tokyo)
Canada (Central)
China (Beijing)
China (Ningxia)
EU (Frankfurt)
EU (Ireland)
EU (London)
EU (Paris)
EU (Stockholm)
Middle East (Bahrain)
South America (Sao Paulo) https://www.concurrencylabs.com/blog/choose-your-aws-region-wisely/

https://www.concurrencylabs.com/blog/choose-your-aws-region-wisely/

Key Pairs

• Key pairs are used to securely access your AWS resources.
• Each key pair has a public and private component.

• AWS keeps the public part

• You get the private part.

• The private key is downloaded to your computer when it is created
• There is no way to get the private key again

• If you lose the private key file you’ll have to generate a new key pair and delete the
old one

To start, you have no key
pairs in your account.

Click:
“Generate Key Pair”

Enter a name for your
key pair and click create.

andy_ohio.pem is
downloaded to my
computer when I click
“create”

Move your private key
file somewhere secure
and memorable. I like to
use a hidden folder for
key files on my mac.

Security Groups

• Sets access rules
• restrict to IP address or only within security group

• Set accessible ports
• SSH - port 22

• NFS - port 2049

• HTTP - port 80, HTTPS port 443

• When you launch an instance, a temporary security group is created, however it’s
simplest to use one that’s already created.

• Useful for connecting EFS with ECS instances (we’ll get to this later)

Your account contains a
default security group
that allows inbound
connections from other
instances in the security
group and nowhere else.

Click ‘Create Security
Group’ to make a new
security group.

We’ll create a security
group with the following
inbound access:

ssh from anywhere
(so you can connect to the
instance from your computer)

nfs from anywhere
(we’ll restrict nfs to this security
group in the next step)

Now we have two
security groups.

Edit the inbound rules
for the new secruity
group by adding the ID
of the security group in
the source field for NFS.

This will restrict
inbound NFS to only
services in this security
group.

Now we have a custom
security group.

Instance Types

• General Purpose
• M - balanced compute, memory, and storage

• T - burstable

• A - ARM

• Compute Optimized
• C: Lower cost per compute cycle

• Storage Optimized
• I: large SSD local storage

• D: Very large HDD local storage (up to 48 TB)

• H: Large HDD local storage (up to 16TB) and balanced
compute and memory

• Memory Optimized
• R: more RAM per CPU

• X: optimized for in memory database applications -
lowest cost per GiB of RAM

• Z: more RAM per CPU with highest CPU clock speed
(4.0 GHz)

• Accelerated Computing (GPU FGPA)
• P: General Purpose GPU

• G: Graphics intensive GPU

• F: FGPAs

• Dozens of machine instances available organized into categories:

Information about instance types

• Amazon’s info: 
https://aws.amazon.com/ec2/instance-types/

• This 3rd-party website is sortable, filterable and includes prices:  
https://www.ec2instances.info

Three ways to purchase an instance

• On-demand - regular
• Reserved - pay by the year
• Spot - pseudo auction

On-Demand Instance

• You start and stop the instance.
• You are billed per hour at fixed rate, only for the time you use.
• Nothing can stop the instance except you.

Reserved Instance

• Discounts on long term reservations. The instance is yours for the
duration of the term wether you use it or not.

• 38% discount for a 1-year reservation paid monthly
• 72% discount for a 3-year reservation paid in advance

• You probably don’t want to use reserved instances

SPOT Instance

• You can get discounted rates on spare capacity (up to 90%
discount).

• You bid the most you’re willing to pay per hour.
• You pay the market clearing rate each hour (not your bid rate).
• If the market clearing rate exceeds your bid amount your instance is

terminated without warning.

My spot bidding strategy:
Bid a few cents more than the on-demand price.

shhhh…

Let’s launch an instance!

I’ve always used Amazon
Linux. I don’t have a
good reason.

Then you select the type
of instance.

Make sure you only use
the free tier eligible
instance if you don’t
want to pay.

Nothing to do here yet.

But we’ll do some things
here later.

This is where you add
EBS storage, if you
decide to use that.

If you want to track
costs by project, add a
tag here.

Also, you need to
activate the tag in the
cost management page
(we’ll do that towards
the end)

We’ll use the security
group we created.

Yes, the security group is
open to the world, but
they can’t get in without
your private key.

Pick the key you want to
use, and then
acknowledge that you
have the key file.

There it is, you did it!

You are clouding!

Connecting to your instance

• Mac & Linux: use ssh
• Windows: use putty or

your favorite ssh client

Connecting on Mac / Linux

ssh command from mac

-i to use your private key file

ec2-user is the username for
amazon linux

use the public IP for your instance

Connecting on Mac / Linux

yes you want to continue
connecting.

Connecting on Mac / Linux

whoops!

you need tighter permissions for
your private key.

Connecting on Mac / Linux

chmod 600 to prevent access
from any other user.

Connecting on Mac / Linux

then ssh again and viola!

Connecting on Windows

First you need to convert your
private key file to a PuTTY private
key file.

Open PuTTYgen

Connecting on Windows

Click “Load”

Browse to and select your pem file
from amazon.

Connecting on Windows

Click “Save private key”

Connecting on Windows

Next Launch PuTTY

Connecting on Windows

Select Session, if not already
selected

Enter the public IP address of
your instance

Connecting on Windows

Select “Connection”
 -> “SSH”
 -> “Auth”

Click Browse, and select the
private key ppk file.

Then click “Open”

Connecting on Windows

Yes, you want to carry on
connecting.

Connecting on Windows

at the “login as:” prompt enter
ec2-user

Connecting on Windows

And you’re in!

Look at that screen. Your family
is going to think you’re a
nefarious hacker.

Regardess of OS, It’s the same from here…

• Bourne-Again Shell (bash)
• package manager: yum

Installing Software

• Amazon Linux uses yum package manager
• First run yum update to get security and other updates

• Then install packages needed to compile Radiance

sudo yum -y update
sudo yum -y install tcsh gcc gcc-c++ libX11-devel

Commands for installing RADIANCE

create a directory for Radiance
mkdir Radiance
cd Radiance

download Radiance HEAD from radiance-online.org
wget --no-check-certificate http://www.radiance-online.org/software/snapshots/radiance-HEAD.tgz
wget --no-check-certificate http://www.radiance-online.org/download-install/radiance-source-code/latest-release/radR52supp.tar.gz

unpack tarballs
tar -xf radiance-HEAD.tgz
tar -xf radR52supp.tar.gz

compile and install radiance
cd ray
sudo ./makeall install

set raypath and copy cal files to raypath
echo RAYPATH=.:/usr/local/lib/ray/ > .bash_profile
echo export RAYPATH > .bash_profile
sudo cp src/cal/cal/* /usr/local/lib/ray/.

check installation
rtrace -version

http://radiance-online.org
http://www.radiance-online.org/software/snapshots/radiance-HEAD.tgz

Run Mark Stock’s Benchmark

Install git
sudo yum -y install git

clone benchmark repo
git clone https://github.com/markstock/Radiance-Benchmark4.git

run the benchmark
export NCPU=16; make smp

File Storage Options

price per GB

Simple Storage Service
(S3) $0.02

• object storage in flat environment
• good for archiving tarballs of old projects, but not for active

storage

Elastic Block Store
(EBS) $0.10

• Can be attached to a single EC2 instance
• Easy to attach when launching instance
• Limited to one availability zone (most regions have three zones)
• Size is fixed and set when provisioned (you pay for empty GB)

Elastic File System
(EFS) $0.30

• Can be simultaneously attached to many EC2 instances
• Must be mounted like a network drive (at the command line or with

a startup script)
• Spans availability zones (but limited to region)
• Size is elastic, you only pay for GB used by your data

Andy recommends EFS

Lifecycle policy
automatically moves
files not recently
accessed to lower cost
storage

The next time its
accessed there will be
latency of up to 100ms.
but then it’s put back
into the faster more
expensive storage.

Your file system id is
used for mounting to
instances.

There are mount
instructions on the EFS
page if you ever forget.
You don’t need to
download this pdf again
just for mounting
instructions.

Mounting Elastic File Storage

Install tools
sudo yum install -y amazon-efs-utils

create mount point
mkdir efs

mount
sudo mount -t efs fs-8e7921f7:/ efs

change owner and group if it’s your first time mounting the file system
sudo chown ec2-user efs
sudo chgrp ec2-user efs

Saving a custom machine image

• It’d be nice to not have to do all this setup every time, right?
• Machine Images - You can save the state of the machine
• Configuration script - Allows you to run updates and mount EFS

drives when the instance is started

Machine Images

• Remember this step
when launching an
instance? ——————>

Machine Images

• Let’s create a machine
image!

Select the instance from
which you want to
generate a machine
image.

Make sure it’s not busy,
it will be rebooted to
make the image!

Select the instance from
which you want to
generate a machine
image.

Make sure it’s not busy,
it will be rebooted to
make the image!

There’s our new image!

Configuration / Startup script

• There are some things you’ll want to run every time you start an
instance, for example:
• sudo yum -y update  

(for security)

• sudo mount -t efs myfilesystem:/ efs

• Configuration scripts can be provided as a text file when launching
an instance.

• Or you could put this in a @reboot cron job on the machine image.

Example Configuration Script

#! /bin/bash

yum -y update
mount -t efs fs-8e7921f7:/ /home/ec2-user/efs

When provided as a configuration script, it is run with root
privileges, so you don’t need sudo.

aws_startup.bsh:

When we go to launch
an instance the new
image is available.

I’m going to launch a 16
CPU instance this time.

NOT FREE TIER!

And let’s do a spot
request too.

Scroll

We can add our
configuration script as a
file under advanced
details.

Tagging the spot request
does not tag the
instance. You need to
tag the instance when it
launches.

Now that the spot
request is fulfilled, you
should remember to tag
the resulting instance.

Now you should
remember to tag your
spot fulfilled instance.

Now you should
remember to tag your
spot fulfilled instance.

Now you should
remember to tag your
spot fulfilled instance.

Upload model files - Mac / Linux

• scp (secure copy)
• Copies files over ssh (similar syntax to ssh)

scp -i aws_ohio.pem -r my_model/ ec2-user@18.222.35.37:~/efs/

-i key.pem : private key

-r : recursive (copies directories and contents)

copy this to here

Upload model files - Windows

• pscp (PuTTY secure copy)
• Copies files over ssh

pscp -i aws_ohio.ppk -r my_model/ ec2-user@18.222.35.37:

-i key.ppk : private key

-r : recursive (copies directories and contents)

copy this to here

Uploading David’s example files

#These commands are run locally.
upload zip files
scp -i ~/aws_ohio.pem 01_genBSDF.zip ec2-user@18.222.35.37:~/efs/.
scp -i ~/aws_ohio.pem example_noResults.zip ec2-user@18.222.35.37:~/efs/.

Start Simulation!!!!

• nohup (very important)
• keeps a process running until it finishes, even if you log out

• sends stdout to a file, nohup.out by default

• to stop a process running with nohup, us ps to get the process id and kill to
end it.

Running David’s BSDF example

unpack zip files
unzip 01_genBSDF.zip
unzip example_noResults.zip

change permission to make scripts executable
this can be avoided if script has ‘bash myscript.sh’ instead of ‘./myscript.sh’
cd example_noResults
chmod +x *.sh scripts/*.sh

copy cal file to current directory so script can find it
cp ../01_genBSDF/window7_2side.cal .

run command
nohup time bash 00_all.sh &

Benchmarks on David’s example

Instance Type vCPU Physical Prodessor Clock
Speed

Memory
(GiB)

File
Storage

Time
(s)

On Demand Spot (18 Aug, 15:00)
Rate/hr Cost Rate/hr Cost

c5.24xlarge 96 2nd Gen Xeon Platinum 8175CL 3.0 GHz 192 EBS 263 $4.08 $0.298 $0.91 $0.066
c5.24xlarge 96 2nd Gen Xeon Platinum 8175CL 3.0 GHz 192 EFS 441 $4.08 $0.500 $0.91 $0.111
m5.24xlarge 96 Intel Xeon Platinum 8175 3.1 GHz 384 EBS 276 $4.61 $0.354 $0.96 $0.074

m5d.24xlarge 96 Intel Xeon Platinum 8175 3.1 GHz 384 SSD 278 $5.42 $0.419 $0.96 $0.074
m5d.24xlarge 96 Intel Xeon Platinum 8175 3.1 GHz 384 EFS 463 $5.42 $0.697 $0.96 $0.123
c5.18xlarge 72 Intel Xeon Platinum 8124M 3 GHz 144 EBS 309 $3.06 $0.263 $0.80 $0.069
c5.18xlarge 72 Intel Xeon Platinum 8124M 3 GHz 144 EBS 501 $3.06 $0.426 $0.80 $0.111
c5.12xlarge 48 2nd Gen Xeon Platinum 8175CL 3.0 GHz 96 EBS 464 $2.04 $0.263 $0.46 $0.059
c5.12xlarge 48 2nd Gen Xeon Platinum 8175CL 3.0 GHz 96 EFS 638 $2.04 $0.362 $0.46 $0.082
m5.12xlarge 48 Intel Xeon Platinum 8175 3.1 GHz 192 EBS 483 $2.06 $0.276 $0.54 $0.072
m5.12xlarge 48 Intel Xeon Platinum 8175 3.1 GHz 192 EFS 665 $2.06 $0.380 $0.54 $0.100
c5.9xlarge 36 Intel Xeon Platinum 8124M 3 GHz 72 EBS 592 $1.53 $0.252 $0.39 $0.064
c5.9xlarge 36 Intel Xeon Platinum 8124M 3 GHz 72 EFS 774 $1.53 $0.329 $0.39 $0.084
c5.4xlarge 16 Intel Xeon Platinum 8124M 3 GHz 32 EBS 1220 $0.68 $0.230 $0.15 $0.051
c5.4xlarge 16 Intel Xeon Platinum 8124M 3 GHz 32 EFS 1415 $0.68 $0.267 $0.15 $0.059

Compute optimized instances completed the script in
less time and cost less.

C
om

pl
et

io
n

tim
e

(s
)

0

125

250

375

500

Number of CPUs
0 24 48 72 96

Compute Optimized
General Purpose

O
n

D
em

an
d

Pr
ic

e

$0

$1

$2

$3

$4

$5

Number of vCPUs
48 96

Compute Optimized
General Purpose

Increasing CPU count has diminishing returns, but for this
simulation up to 96 CPUs are still effective.

C
om

pl
et

io
n

tim
e

(s
)

0

200

400

600

800

1000

1200

1400

Number of CPUs (log scale)
10 100

Compute Optimized Instances
C

PU
 H

ou
rs

0
1
2
3
4
5
6
7
8

Number of CPUs
0 24 48 72 96

(different
physical
processor)

The simulation cost increases with more vCPUs.
C

os
t t

o
ru

n
sc

rip
t

$0.00

$0.06

$0.12

$0.18

$0.24

$0.30

Number of CPUs
0 24 48 72 96

On Demand
SPOT

Cost is hourly price time simulation time. This
assumes the instance is terminated immediately.
Spot prices subject to variability.

Using instance attached storage (EBS) for simulation files
was faster than using network attached storage (EFS)

C
om

pl
et

io
n

tim
e

(s
)

0
200
400
600
800

1000
1200
1400
1600

Number of CPUs (log scale)
10 100

Instance Attached Storage
Network Attached Storage

Alarms

• Alarms take an action when the instance usage crosses a
threshold.

• For example (and the only reason I use alarms):
• Terminate the instance when the CPU is below 1% for 10 minutes

• Alarms cost $0.10 each, though they save money by terminating
idle instances (just make sure your results are on or moved to
persistent storage).

Click on monitoring tab

Then on Create Alarm
button

Alarms cost $0.10 each.

They save money by
terminating idle
instances (just make
sure your results are on
or moved to persistent
storage).

Download Results

• If you used an alarm to terminate your instance, you’ll need to
launch another instance to get your results.

• Use scp (Mac/Linux) or pscp (Windows) to download your result.

scp -i aws_ohio.pem -r ec2-user@18.222.35.37:~/efs/my_model/results/ .

pscp -i aws_ohio.ppk -r ec2-user@18.222.35.37:~/efs/my_model/results/ .

copy this to here

Downloading Results

#These commands are run locally.
download results file
scp -i ~/aws_ohio.pem -r ec2-user@18.222.35.37:~/efs/example_noResults/result .

Terminate Instance

• When you’re done, you terminate your instance
• Not much else to say, this one is pretty self explanatory.

Possibly the easiest step.

Invoice your client

• Activate tags for cost tracking
• Be diligent about tagging resources (this is the hard part)

• Resources can NOT be tagged retroactively

• Use cost explorer to aggregate costs for each project

Click cost allocation tags

Select the tag(s) to track
for cost allocations

Activate them

Click cost explorer
button

Click explore costs

You can filter by may
attributes, including
tags.

And you can download a
CSV.

Bask in the glory!

Andy's Cloud College
THIS DIPLOMA IS PRESENTED TO

You
For Clouding Along During the Cloud Course

21 August 2019

