

Daylighting performance assessment of shading devices concerning building's aesthetic

Ali Alajmi

College of Technological Studies, PAAET, Kuwait

Faris Aballkhail

Architecture College, Kuwait University

Outline

- Background
- Introduction
- Objectives
- Methodolgy
- Results
- Conclusion
- Future work

Background

• Climate

Weather

Introduction

• Buildings consume the majority of generated power more than 40%.

 Windows and its attachment play a major role in heat gain or loss from a building.

Introduction

 Buildings/Windows designed to be more sustainable.

70-80s

80-90s

Now

Building owners are fascinated by the appearance of their buildings.

Objectives

- Optimum selection of window elements that:
 - Reducing heat gain
 - Provide an aesthetic façade
 - Ensure visual comfort

Objective Function and Constraints

Objectives

$$f(x) = [Q_c(x) + Q_h(x)]/3.6 \times 10^6$$
 (1)

$$f(y) = \left| E_{Daylighting}(x) \right| \tag{2}$$

$$f(xy) = f_{\min}(x) + f_{\max}(y) \tag{3}$$

Constraints

$$c_{1,2}(x) = \sum_{i=1}^{n} z_i / n$$

$$z_i = \begin{cases} NH_{lux}, & \text{if } (NH_{lux} > 500) \\ NH_{glare}, & \text{if } (NH_{glare} > 22) \end{cases}$$

$$(4)$$

Design Parameters

Table 1: Design parameters values.

Index	Variable	LB	UB	Increment
1	Overhang tilt (°)	90	135	5
2	overhang projection (%)	0	H/2	5
3	side-fins projection (%)	0	W/2	5

Genetic Algorithm Concept

Methodology

Simulation-based Optimization

Genetic algorithm (GA) coupled with a building simulation program (EnergyPlus)

A workstation of 48 threads (ENSIMS X3200) powered by 2x Intel Xeon 2.5GHz with a memory size of 64GB RDIMM was allocated to accomplish the computation (up to 56 at a time).

	Overhang (m)	Projection Telt (°)	Fins (m)	Glazing Mat	Air Gap	WWR	w	н	Lighting (kWh)	Heating (kWh)	Cooling (kWh)	Total	Saving
base	N/A	N/A	N/A	Low-e 6mm	12	50	2.8	2.7	43.3	26.4	3846.0	3872	0%
Overhang/ Sided-fins	1.2	130	1.0	Low-e 6mm	12	50	2.8	2.7	49.9	97.5	2738.4	2836	-27%
	0.9	115	1.1	Low-e 6mm	12	50	2.8	2.7	46.2	86.8	2899.4	2986	-23%
	1.1	110	0.7	Low-e 6mm	12	50	2.8	2.7	45.4	74.1	2976.1	3050	-21%
Simple Overhang	1.3	135	N/A	Low-e 6mm	12	50	2.8	2.7	46.7	74.1	2847.9	2922	-25%
	1.2	125	N/A	Low-e 6mm	12	50	2.8	2.7	44.9	63.8	2983.2	3047	-21%
	1.2	110	N/A	Low-e 6mm	12	50	2.8	2.7	44.7	54.9	3099.2	3154	-19%
Louvers	1	90	N/A	Low-e 6mm	12	50	2.8	2.7	44.1	69.0	2891.5	2960	-24%
	0.75	90	N/A	Low-e 6mm	12	50	2.8	2.7	44.0	60.0	3050.0	3110	-20%
	0.5	90	N/A	Low-e 6mm	12	50	2.8	2.7	43.5	51.0	3232.2	3283	-15%

Illuminance

Illuminance

Illuminance

Annual - sDA

Annual - ASE

Annual-UDI

Conclusions

- Shading devices, overhang/sided-fins, louvers, and simple overhang, in East orientation saved 27, 25, and 24% respectively.
- It is only 3% different between the optimum solutions.
- Illuminance and annual daylighting proved that the louvers shadings performed the best.
- Louvers shading was less risk to visual discomfort as interpreted by the ASE assessment.
- Consequently louvers shading has a better UDI.

The architect can select optimum efficient shading devices that keep the building's aesthetic to their preferences without prejudicing the energy efficiency.

Future Work

• The effect of including INTERIOR BLINDS might enrich the analysis.

Optimum shading devices of OTHER orientations.

LIFE-CYCLE COST ANALYSIS of optimum solutions.

Ali Alajmi

Faris Aballkhail

<u>alialajmi70@gmail.com</u> <u>f.abalkhail@live.com</u>