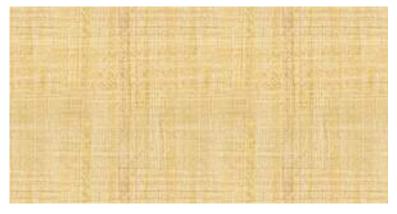
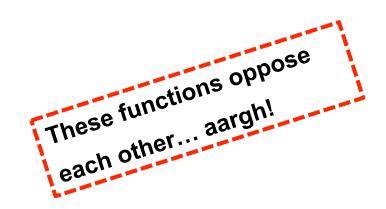
SIMULATION-BASED WORKFLOWS FOR THE DESIGN OF TEXTILE SHADING SYSTEMS WITH ENHANCED FUNCTIONALITY

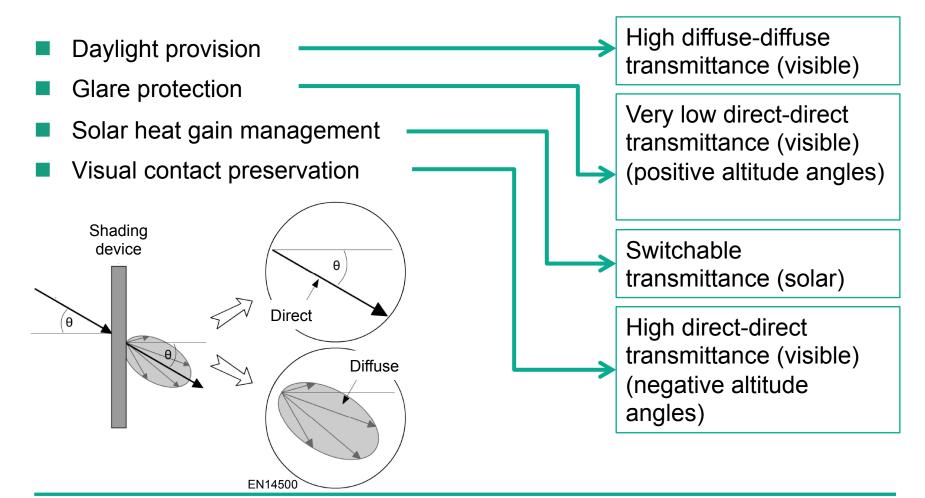
Bruno Bueno

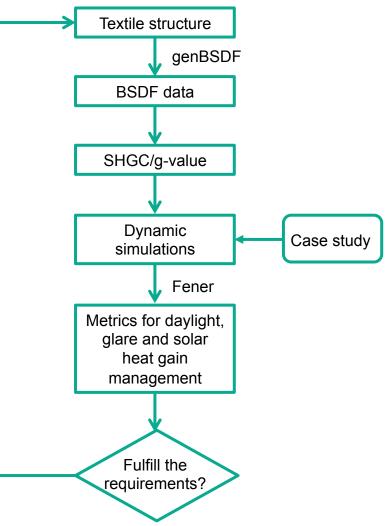
Radiance Workshop Loughborough UK, 03-04.9.18


Fraunhofer Institute for Solar Energy Systems ISE

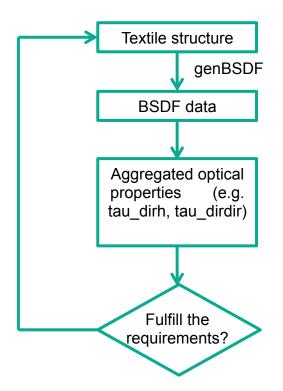

www.ise.fraunhofer.de

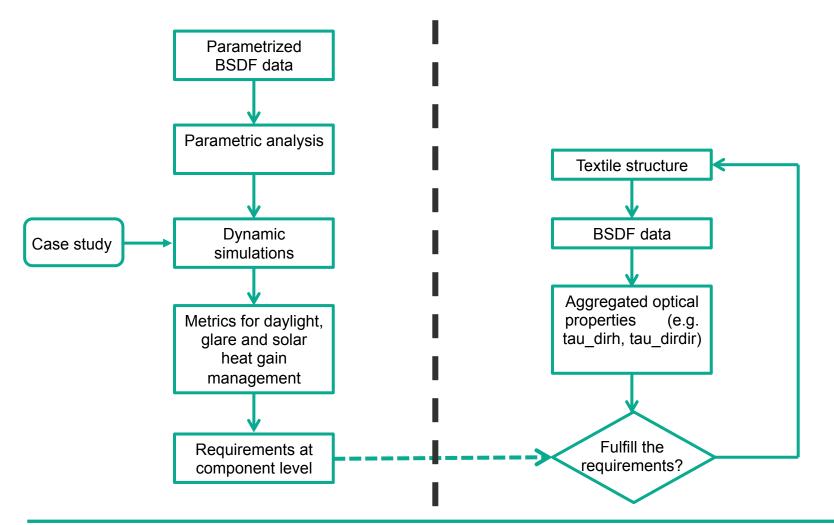
Requirements for shading and daylighting systems Building level


- Daylight provision
- Glare protection
- Solar heat gain management
- Visual contact preservation

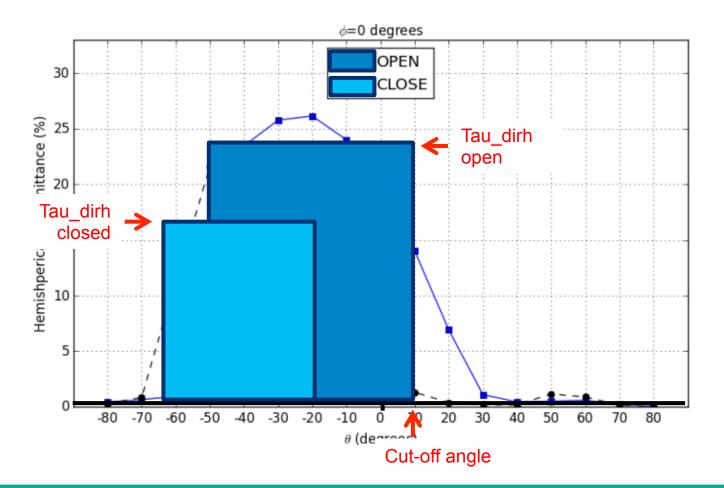

Requirements for shading and daylighting systems Building level – component level

Workflow for the design of textile shading systems Building level


- Takes into account the specific building context in which the textile shading device will be applied.
- However, there isn't a direct link between design parameters (textile geometry) and evaluation parameters (metrics)
 - Errors are difficult to identify.
 - Assumptions of models and metrics are difficult to interpret (and easy to forget).

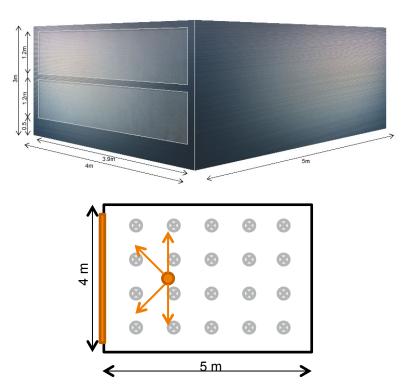

Workflow for the design of textile shading systems Component level

- There is a direct link between design parameters (textile geometry) and evaluation parameters (optical properties).
- However, the final performance of the shading device for a certain building application and a control strategy is unknown.



Workflow for the design of textile shading systems Building level <> Component level

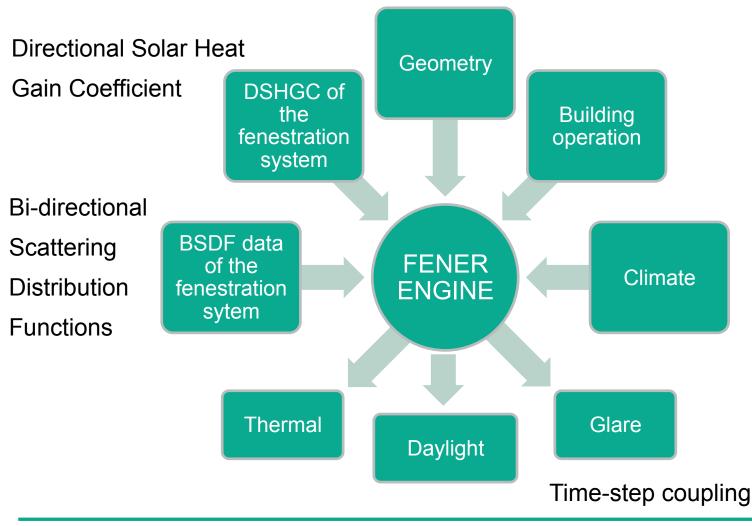
Workflow for the design of textile shading systems Parametrization of the angular behavior of a CFS


Workflow for the design of textile shading systems Parametric analysis

Cases	Tau_dirh open (%)		Cut-off angle (deg)	Parametrized angular performance
1 (ref)	20	15	10	
2	20	15	30	
3	30	15	10	
4	30	15	30	

Workflow for the design of textile shading systems Definition of the case study

Building type	Office		
Climate	Frankfurt		
Orientation	South		
Glazing ratio	80%		
Room dimensions	4 m x 5m x 3 m		
Occupation schedule	8-18 LT		
Infiltration	0.6/0.2 ACH		
Internal heat gains	12 W m-2		
Heating thermal setpoint	21°C/17°C		
Cooling thermal setpont	24°C/28°C		
Construction type	heavy		
Surface albedos	0.7 (fl = 0.2)		



Workflow for the design of textile shading systems **Definition of the case study – control strategy**

		If occupation:					
	Primary glare control	if max_vertical_illuminance > 3473lux: Upper window: Textile in open position Lower window: Textile in closed position					
•	Secondary glare control if enough daylight	<pre>elif max_vertical_illuminance > 2670lux:</pre>					
•	Temperature control if enough daylight	else: if indoor_temp > 23°C: if average_horizonal_illuminance > 400 lux: Upper window: Textile in open position Lower window: Textile in open position else: Upper window: Textile in open position Lower window: Textile is retracted					

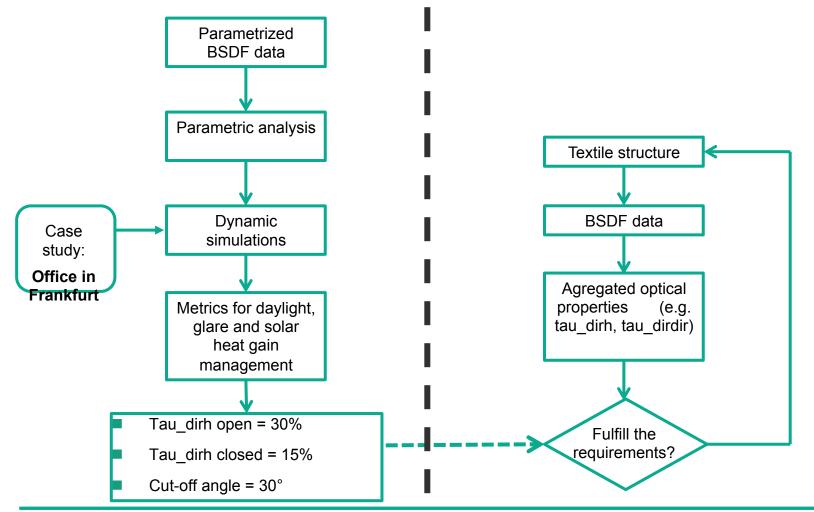
Workflow for the design of textile shading systems **Dynamic simulations**

B. Bueno, J. Wienold, A. Katsifaraki, T.E. Kuhn, Fener: a Radiance-based modelling approach to assess the thermal and daylighting performance of complex fenestration systems in office spaces. Energy and Buildings 94 (2015) 10-20 © Fraunhofer ISE

B. Bueno, J.-M. Cejudo-Lopez, T.E. Kuhn, A general method for the evaluation of the thermal impact of complex fenestration systems in building zones, Energy and Buildings 155 (2017) 43-53

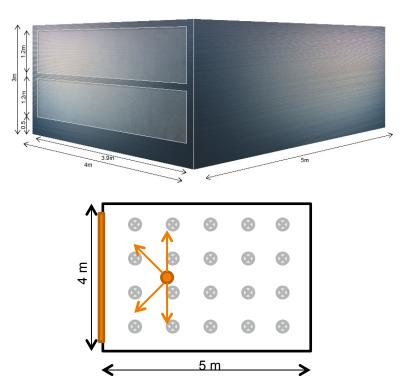
Workflow for the design of textile shading systems **Definition of evaluation criteria - metrics**

Function	Metric	
Daylighting	Percentage of daylighting hours (Ratio of occupied hours with <u>average</u> horizontal illuminance > 400 lux)	
Glare	Percentage of "visual comfort" hours (Ratio of occupied hours with <u>maximum</u> vertical illuminance < 3473 lux)	
Solar heat gain management	Percentage of heating energy demand savings with respect to the maximum heating demand (the heating energy demand of the same case with an opaque window)	
	Percentage of cooling energy demand savings with respect to the maximum cooling demand (the cooling energy demand of the same case with a transparent window)	



Workflow for the design of textile shading systems **Comparison of design alternatives – case Frankfurt**

Cases	Tau_dirh open (%)	Tau_dirh closed (%)	Cut-off angle (deg)	Daylight (%hours)	Visual comfort (%hours)	Heating saving (%)	Cooling savings (%)
1	20	15	10	56	96	62	95
2	20	15	30	70	96	64	95
3	30	15	10	64	96	64	94
4	30	15	30	75 (sDA=100%)	96	64	94


Workflow for the design of textile shading systems Establishment of requirements at component level

Workflow for the design of textile shading systems Definition of the case study– case Rome West

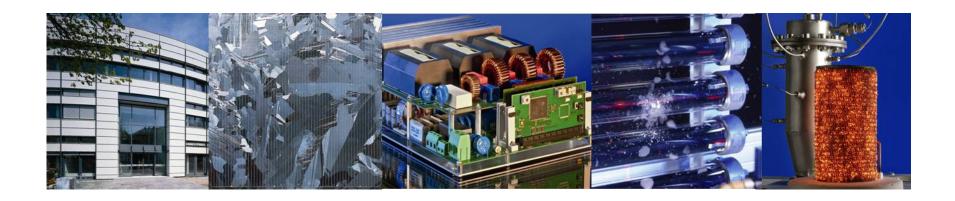
Building type	Office		
Climate	Rome		
Orientation	West		
Glazing ratio	80%		
Room dimensions	4 m x 5m x 3 m		
Occupation schedule	8-18 LT		
Infiltration	0.6/0.2 ACH		
Internal heat gains	12 W m-2		
Heating thermal setpoint	21°C/17°C		
Cooling thermal setpont	24°C/28°C		
Construction type	heavy		
Surface albedos	0.7 (fl = 0.2)		

Workflow for the design of textile shading systems Comparison of design alternatives – case Rome West

Cases	Tau_dirh open (%)	Tau_dirh closed (%)	Cut-off angle (deg)	Daylight (%hours)	Visual comfort (%hours)	Heating saving (%)	Cooling savings (%)
1	20	15	10	63	99	69	88
2	20	15	30	84 (sDA=100%)	97	72	86
3	30	15	10	79 (sDA = 90%)	99	69	88
4	30	15	30	86 (sDA=100%)	95	73	86

Workflow for the design of textile shading systems **Case-specific requirements at component level**

Case studies	Climate	Facade orientation	Tau_dirh open (%)	Tau_dirh closed (%)	Cut-off angle (deg)	
1	Frankfurt	South	30	15	30	
2	Rome	West	30	15	10	
3	Rome	South	20	15	30	



Conclusions

- Simulation-based workflows for the design of angular selective, switchable textile shading systems have been presented.
- Workflows that aim to fulfill requirements at component or at building level have different pros and cons.
- A hybrid workflow is proposed.
 - The requirements of the shading system at component level are determined by the analysis of the case study at building level.
- The hybrid workflow allows a case-specific design of textile shading systems.

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Bruno Bueno bruno.bueno@ise.fraunhofer.de www.ise.fraunhofer.de Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

The present study has been funded by the Federal Ministry of Economic Affairs and Energy by a resolution of the German parliament (Project ID: 03ET1432A).

