

Employing Radiance in Thermal Comfort Simulations involving Complex Fenestrations

Sarith Subramaniam¹, Sabine Hoffmann¹, Abolfazl Ganji¹, Eleanor Lee²

¹Department of Civil Engineering, TU Kaiserslautern, Germany.

²Lawrence Berkeley National Laboratory, USA

gebäude* systeme technik Overarching goals of this research

- Employ raytracing to estimate shortwave radiative load on human body.
- Incorporate solar load through complex fenestrations in Thermal Comfort calculations.

- Assessing the impact of local solar load through thermophysiological calculations.
- Use results from above steps in parallel with whole building simulations.

- Solar Radiation and Thermal comfort
- Radiosity versus Raytracing
- Radiance-based Energy Balance
- Solar load calculations (coefficient-based)
- Thermal sensation and comfort results (PhySCo)

systeme technik Relevance of calculating local solar load on the body

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

gebäude* systeme technik Why does it make sense to use Radiance?

- Accuracy and speed can be optimized based on specific surfaces of interest.
- Radiance is multi-threaded, cross-platform, portable

^{gebäude*} systeme technik Workflows for calculating view factors in Radiance

Option 1: Similar to rtrace (Classic Radiance)

rfluxmtx sender surfaces receivers \
geometry > view factors

Option 2: Similar to Radiosity*

^{gebäude*} systeme technik The rays-based approach is faster and easier to set up

rfluxmtx - receivers geometry < sender\
rays > view factors

Option 1: Similar to rtrace (Classic Radiance)

Ray origin ~ Centre of manikin meshes Ray direction ~ Surface normals of manikin meshes

Radiative Load(W) on mesh: Irradiance(W/m²) x Area (m²)

Results are summarized as per 16 body segments

systeme technik Energy Balance test (Sent vs Received energy)

rfluxmtx <u>-V+</u> -I+ -y NumPoints -ab 1 -ad 2000 -lw 0.005 - receiver.rad materials.rad geometry.rad < points.txt > contrib.txt

gebäude* systeme technik Precision of results relates to mesh density

Increasing Precision

Received/Sent: 1.172

Received/Sent: 1.001

gebäude* systeme technik

Tests with manikin, Detailed surface summation

Received\Sent: 1.002

Radiating surface: South Window

Glow value: 800/channel

Surface area: 4.32 m²

Radiated Energy $(800x4.32x\pi) = 10857W$

Surface	Solar Load (W)	-
Ceiling	2901	
East	2030	
Floor	2560	
North	931	
South	0	
West	1927	J
Body Part	Solar Load (W)	
Chest	76	
Head	87	
Back	21	
Pelvis	38	
Leftarm	4	
Leftleg	14	
Leftfoot	12	
Lefthand	10	
Leftshoulder	0	
Leftthigh	23	
Rightarm	31	
Rightleg	37	
Rightfoot	21	
Righthand	17	
Rightshoulder	42	
Rightthigh	95	J

> Room surfaces (10349 W)

> Manikin parts (528 W)

TECHNISCHE UNIVERSITÄT

- Energy balance was conclusively proven.
- Thermal comfort calculations require simulations with real sky conditions.
- The glazing aperture contains a complex fenestration (BSDF) instead of a radiating surface
- A coefficient-based approach is employed to prevent redundancy.

systeme technik Current setup for annual simulations

Geometry, including that of the manikin, is non-reflective (plastic mat 0 0 5 0 0 0 0)

BSDFs are incorporated in the scene geometry (void BSDF cfs 0 0 6 ...)

Raw irradiance data from dctimestep is processed directly without weighting functions.

gebäude* systeme technik Workflow for annual simulations

gebäude* systeme technik **Typical result (Manheim, Germany 10:00 am 04/Feb)**

rpict – i | falsecolor – m 1

rpict – i | falsecolor – m 1

gebäude* systeme technik PhySCo calculations with <u>clear glazing</u>

4th of February

gebäude* systeme technik

PhySCo calculations with <u>blinds</u>

4th of February

Exact geometry of blinds

Klems BSDF

Tensor-Tree (t4 5) BSDF

Impact of the choice of BSDFs on the accuracy of Thermal Comfort assessment.

• A Radiance-based workflow for calculating solar load on the human body has been formulated.

gebäude*

systeme technik **Conclusions**

• Precision of the calculations is contingent on maintaining a high mesh density.

• Results from annual TMY-based simulations have been used for corresponding thermal comfort calculations.

gebäude* systeme technik PhySCo calculations with <u>clear glazing</u> 23rd of May

gebäude* systeme technik PhySCo calculations with <u>blinds</u> 23rd of May

