Sefaira’s Method for Rapidly Calculating Daylight Metrics Using Radiance

New York • London
Kerger Truesdell, AIA, LEED AP
Product Manager, Sefaira
New York, NY

Experience:
MBH Architects
Hart | Howerton
FME Architecture + Design

Education:
University of Notre Dame
B. Arch ’07 MBA ’14

Best coast?
The West Coast.
Kerger Truesdell, AIA, LEED AP
Product Manager, Sefaira
New York, NY

Experience:
MBH Architects
Hart | Howerton
FME Architecture + Design

Education:
University of Notre Dame
B. Arch ’07 MBA ’14

Best coast?
The West Coast.
Today’s guiding questions:

• What problem does Sefaira solve, and for whom?

• What unique challenges does Sefaira face?

• How does Sefaira apply Radiance in meeting those challenges?
Sefaira makes it easy for teams to meet project performance goals.
Sefaira Daylighting supports Architects and Specialists at early-stage design.
Project teams won’t meet goals by accident.

They must assess performance early and often, in order to:

• support comparative iteration
• ensure their project is on track to meeting performance goals
• construct a design narrative around high performance solutions
 – Supports and justifies design decisions
 – Fosters a trusting relationship with the client
Project teams need the right tools.
Project teams need the right tools.
Project teams need the right tools.
Speed • Accessibility • Precision

How do we deliver the right balance of Speed, Accessibility, and Precision for early-stage performance analysis?
Speed • Accessibility • Precision

- **Fast setup**
- **Parallelization in the cloud**
 - Consume sensor array in pieces.
 - Use multiple processors to churn through rtrace.
- **Daylight Coefficients (DAYSIM)**
Speed • Accessibility • Precision

• Fast setup
• Parallelization in the cloud
 – Consume sensor array in pieces.
 – Use multiple processors to churn through rtrace.
• Daylight Coefficients (DAYSIM)
Speed • Accessibility • Precision

• Fast setup
• Parallelization in the cloud
 – Consume sensor array in pieces.
 – Use multiple processors to churn through rtrace.
• Daylight Coefficients (DAYSIM)
Speed • **Accessibility** • Precision

- **Simple Scene Setup**
 - Geometry & Materials
 - Grid spacing and layout
 - Location-based information
 - Simulation-specific settings

- **Communication**
 - Metrics
 - Outputs
Speed • **Accessibility** • Precision

- **Simple Scene Setup**
 - Geometry & Materials
 - Grid spacing and layout
 - Location-based information
 - Simulation-specific settings

- **Communication**
 - Metrics
 - Outputs
Speed • Accessibility • Precision

• Simple Scene Setup
 – Geometry & Materials
 – Grid spacing and layout
 – Location-based information
 – Simulation-specific settings

• Communication
 – Metrics
 – Outputs
Speed • Accessibility • Precision

• Simple Scene Setup
 – Geometry & Materials
 – Grid spacing and layout
 – Location-based information
 – Simulation-specific settings

• Communication
 – Metrics
 – Outputs
Speed • Accessibility • Precision

• **Simple Scene Setup**
 – Geometry & Materials
 – Grid spacing and layout
 – Location-based information
 – Simulation-specific settings

• **Communication**
 – Metrics
 – Outputs
Speed • **Accessibility** • Precision

- **Simple Scene Setup**
 - Geometry & Materials
 - Grid spacing and layout
 - Location-based information
 - Simulation-specific settings

- **Communication**
 - Metrics
 - Outputs
Speed • Accessibility • Precision

• Simple Scene Setup
 – Geometry & Materials
 – Grid spacing and layout
 – Location-based information
 – Simulation-specific settings

• Communication
 – Metrics
 – Outputs
Speed • Accessibility • Precision

• Simple Scene Setup
 – Geometry & Materials
 – Grid spacing and layout
 – Location-based information
 – Simulation-specific settings

• Communication
 – Metrics
 – Outputs
Speed • Accessibility • Precision

• Simple Scene Setup
 – Geometry & Materials
 – Grid spacing and layout
 – Location-based information
 – Simulation-specific settings

• Communication
 – Metrics
 – Outputs
Speed • Accessibility • Precision

• Simple Scene Setup
 – Geometry & Materials
 – Grid spacing and layout
 – Location-based information
 – Simulation-specific settings

• Communication
 – Metrics
 – Outputs
Speed • **Accessibility** • Precision

- **Simple Scene Setup**
 - Geometry & Materials
 - Grid spacing and layout
 - Location-based information
 - Simulation-specific settings

- **Communication**
 - Metrics
 - Outputs
Seeking optimum parameters for Radiance and DAYSIM
Assessment

Compare rtrace parameters for their impact on illuminance values and simulation time.

• Point-in-time illuminance assessed at sensor points.
 – Radiance rtrace run locally.

• Three models, five sets of Radiance parameters:
 – Sefaira settings
 – Radiance default “Medium” settings
 – “Daysim3.0Tutorial” settings
 – Specialist-suggested settings
 – Radiance 2.4 “Accurate” settings via radsite.lbl.gov

• Geometry, materials, and lighting kept constant.
Speed • Accessibility • Precision

Sefaira
Radiance Medium Quality
Daysim 3.0 Tutorial
Specialist-suggested
Radsite “Accurate”
Speed • Accessibility • Precision

Sefaira
Radiance Medium Quality
Daysim 3.0 Tutorial
Specialist-suggested
Radsite “Accurate”
Speed • Accessibility • Precision

Analysis Time (seconds)

- Sefaira
- Radiance "Medium"
- Daysim 3.0 Tutorial
- Specialist-suggested
- Radiate "Accurate"

Confidential. Copyright © 2017 Trime
Speed • Accessibility • Precision

- Sefaira
- Radiance Medium Quality
- Daysim 3.0 Tutorial
- Specialist-suggested
- Radsite “Accurate”

Graph showing Lux values against Sensor Points.
Speed • Accessibility • Precision

Sefaira
Radiance Medium Quality
Daysim 3.0 Tutorial
Specialist-suggested
Radsite “Accurate”
Speed • Accessibility • Precision

Analysis Time (seconds)
Key Takeaways

- **Sefaira settings balance speed and precision.**
 - Using defaults also eliminates setup burden from non-specialists.

- **Context is key:**
 - Early-stage comparative analyses demand analysis that is fast enough and precise enough to inform decision-making.

- **There is room for fine-tuning and expanded analysis:**
 - Sensitivity analysis to tease out greater precision / greater consistency compared to benchmarks
 - Expand scene description detail (e.g. materiality)
 - 5-phase! BDSFs!
Questions?
Making it easy for building project teams to meet performance goals.

Kerger Truesdell, AIA, LEED AP
Product Manager / Sefaira Daylighting Visualization
kerger_truesdell@trimble.com
<table>
<thead>
<tr>
<th>Setting</th>
<th>Sefaira</th>
<th>Radiance "MEDIUM"</th>
<th>Daysim 3.0 Tutorial</th>
<th>Specialist-suggested</th>
<th>Radsite "Accurate"</th>
</tr>
</thead>
<tbody>
<tr>
<td>-aa</td>
<td>0.15</td>
<td>0.15</td>
<td>0.1</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>-ab</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>-ad</td>
<td>256</td>
<td>800</td>
<td>1000</td>
<td>1024</td>
<td>512</td>
</tr>
<tr>
<td>-ar</td>
<td>32</td>
<td>1904</td>
<td>300</td>
<td>96</td>
<td>128</td>
</tr>
<tr>
<td>-as</td>
<td>20</td>
<td>128</td>
<td>20</td>
<td>2</td>
<td>256</td>
</tr>
<tr>
<td>-st</td>
<td>1</td>
<td>0.1</td>
<td>0.15</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>-lw</td>
<td>0.05</td>
<td>0.0001</td>
<td>0.004</td>
<td>0.000001</td>
<td>0.002</td>
</tr>
<tr>
<td>-dc</td>
<td>0</td>
<td>0.5</td>
<td>-</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>-lr</td>
<td>-</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>-dj</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>-dp</td>
<td>32</td>
<td>4096</td>
<td>512</td>
<td>4096</td>
<td>-</td>
</tr>
<tr>
<td>-dr</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>-ds</td>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>-ms</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>1.1</td>
<td>-</td>
</tr>
<tr>
<td>-ss</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>-av</td>
<td>-</td>
<td>0.01 0.01 0.01</td>
<td>-</td>
<td>0 0 0</td>
<td>-</td>
</tr>
<tr>
<td>-dt</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Rtrace execution command

```
rtrace -w -h -l+ -u \{Radiance parameters\}
dat_oct_file.oct < sensor_points_file.pts | rcalc -e "\$1=(\$1*0.265+\$2*0.670+\$3*0.065)*179" > dat_results.ill
```
Appendix

Material Definitions

void plastic Massing
0 0 5 0.4000 0.4000 0.4000 0.0000 0.0000

void glass Glazing
0 0 3 tn tn tn \{we incorporate user’s VLT setting\}

\[
\text{tn} = \frac{\sqrt{0.8402528435 + 0.0072522239 \times \text{Tn}^2} - 0.9166530661}{0.0036261119 / \text{Tn}}
\]
2009
Sefaira Founded
Performance Analysis in the cloud

2012
Energy Analysis Introduced

2014
Daylighting Visualization Introduced

2015
EnergyPlus Integration

2016
Sefaira Acquired by Trimble SketchUp