Approaches to Calculating Annual Sunlight Exposure in LightStanza

Will Whiteneck

Director of Technology, LightStanza

Daniel Glaser, PhD

Founding Principal, LightStanza

Radiance Workshop, Portland, Oregon August 23, 2017

What is LightStanza?

An App that is powered by optimized Radiance servers

Who is LightStanza?

Dan, Will, Sydney, Josh

Outline

- 1. What is LightStanza?
- 2. Annual Sunlight Exposure Discussion
- 3. Demo

What is LightStanza: Renderings

Fort Collins Utilities Administration Building Design by RNL Design, Denver, CO (Achieved LEED v4 Platinum)

Renderings

Fort Collins Utilities Administration Building Design by RNL Design, Denver, CO (Achieved LEED v4 Platinum)

Renderings

Fort Collins Utilities Administration Building Design by RNL Design, Denver, CO (Achieved LEED v4 Platinum)

Analysis \rightarrow Design

Trellis Sep 21, 4:00 PM

Aspen Community School, Cuningham Group

Analysis \rightarrow Design

Trellis Sep 21, 6:00 AM

Aspen Community School, Cuningham Group

Easy Access to High Quality Information to Evaluate Tradeoffs

Trellis

Dynamic Glass

11:45AM

Aspen Community School, Cuningham Group

Illuminance Grids

Tuning the Façade w/ Electrochromic Glazing and LightStanza

Gensler

Advanced Fenestration

Dynamic Glass

Blinds

Radiance Workshop, Portland, OR, August 23rd, 2017

Annuals

Green Building Industry Certification

PATENT PENDING TECHNOLOGY OF LIGHT FOUNDRY, LLC @ 2016

Parallelizable Simulations

Annual Sunlight Exposure

"A metric that describes the potential for visual discomfort in interior work environments."

- IES LM-83-12 p. 10

Definitions

The Bedford Building, Winnipeg

ASE Score: The percent of the analysis area that exceeds a 1000 lx from *direct sunlight* for more than 250 hours per year.

Direct sunlight: "The light directly from the orb of the sun, after filtering by atmospheric conditions and transmission losses through fenestration. It **does not account for surface inter-reflections**." -IES LM-83-12 p. 11

Radiance Workshop, Portland, OR, August 23rd, 2017

© LightStanza

Radiance Workshop, Portland, OR, August 23rd, 2017

Four Methods to Calculate ASE

- 1. rtrace
- 2. 3-Phase method
- 3. 5-Phase method
- 4. Geometric

Test Models

Method 1: rtrace

- Most accurate of the four methods.
- Calculate the direct illuminance at each time-step independently, this is the slowest method of the four.
- Glass will transmit rays with "-ab 0"
- For BSDF fenestration, "-ab 1" is needed for off angle transmissions.

Radiance Workshop, Portland, OR, August 23rd, 2017

Method 2: Direct 3-Phase

The Direct 3-Phase is the least accurate of the three methods at calculating ASE.

The Problem with Direct 3-Phase Method

- Disperses energy at the window transmission causing a "smearing" effect.
- Not recommended for calculations sensitive to the direct component!

rtrace 12.8%

3-phase 35.0%

The Direct 3-Phase is a Component in the 5-phase

$I_{5-\text{phase}} = \text{VTDS} - V_d TD_s S_d + C_d S_{\text{sun}}$

Radiance Workshop, Portland, OR, August 23rd, 2017

© LightStanza

Automating the 3-Phase

Challenge 1: Window Group Determination

Challenge 2: Grid-to-Window Pairing

Challenge 2: Grid-to-Window Pairing (Continued)

Radiance Workshop, Portland, OR, August 23rd, 2017

Method 3: 5-phase

$$I_{5-phase} = VTDS - V_d TD_sS_d + C_{ds}S_{sun}$$

• The *direct suns component* of the 5-phase is a fast and accurate way of calculating the annual direct sunlight.

5-phase is ready to use inside of LightStanza!

Different ASE Computations on Larger Models

ASE scores on City of Fort Collins Utilities Administration Building by RNL Design, Denver, CO

3-phase

5-phase Radiance Workshop, Portland, OR, August 23rd, 2017

ASE scores on Alma Station by Point Energy Innovations, San Francisco, CA

5-phase

Can it be Faster?

Many of the sample suns are outside of the sun path.

Can it be Faster? (Continued)

Gendaymtx "-d" produces a sparse matrix which increases processing time.

Radiance Workshop, Portland, OR, August 23rd, 2017

Method 4: Geometric

Get Sun Samples Inside Sun Path

- Used random samples to account for *sub-hourly* annual analysis.
- Randomness reduces systematic error.
- Sun sample density inside solar envelope is on the order of a full sky with "-m 4" Reinhart patch subdivision (2305 sky patches).

For Each Grid Point in the Model, Cast a Ray to Each Solar Sample.

Identify Sun Rays

All Sun rays visible

Sun rays culled by geometry.

Radiance Workshop, Portland, OR, August 23rd, 2017

Calculate transmission coefficients

At each Timestep, Calculate the Sun Position and Get the Nearest Sample Point

Nearest sample point <

Sun position at time step /

Putting it All Together

Radiance Workshop, Portland, OR, August 23rd, 2017

Summary

• LightStanza's Web User-Interface Allows for more fluid, informative, and less-error prone experience

• LightStanza's cloud servers use automated analysis that provide fast, accurate, and robust results.

Questions?