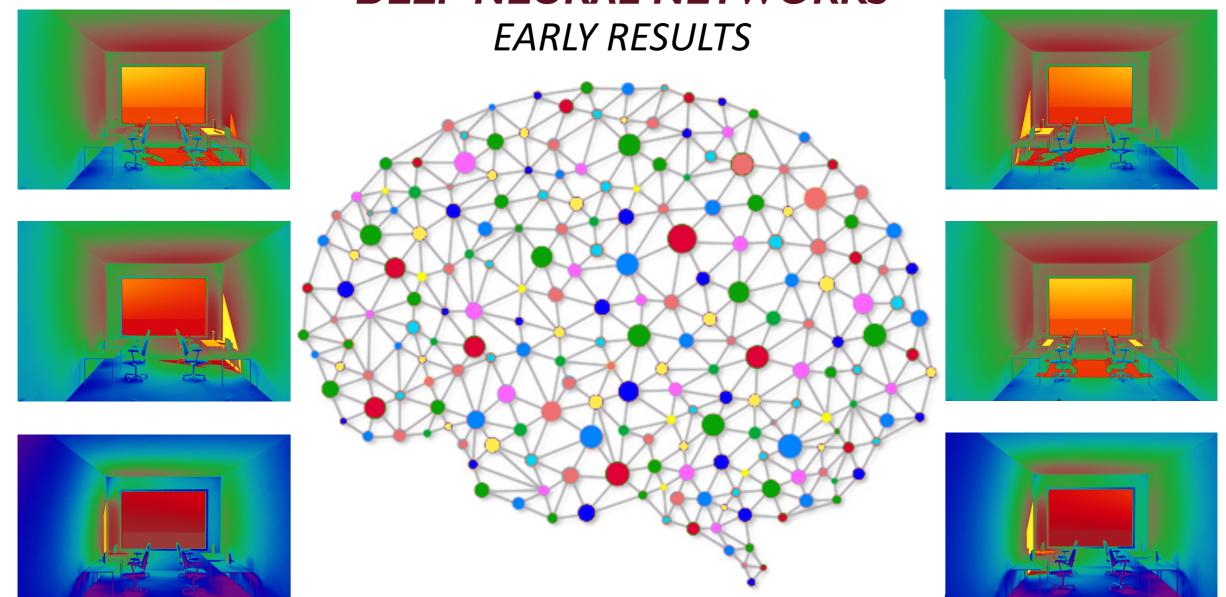
COMPUTING LONG-TERM DAYLIGHTING SIMULATIONS FROM HIGH DYNAMIC RANGE PHOTOGRAPHS USING DEEP NEURAL NETWORKS



Yue Liu¹, Mehlika Inanici¹, Alex Colburn²

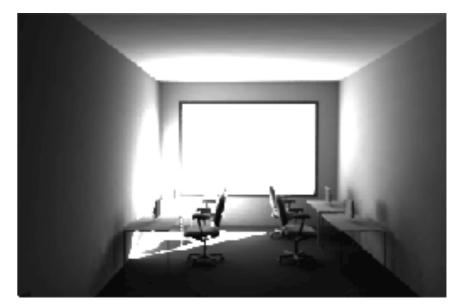
Email: yueliu@uw.edu

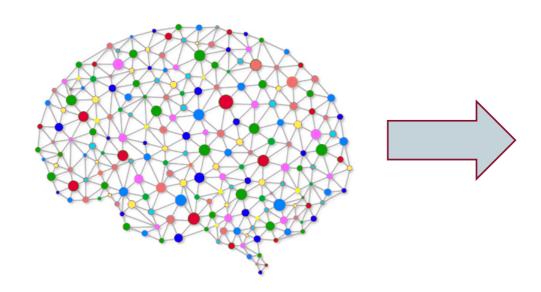
¹ University of Washington, College of Built Environments ² Zillow Group, 3D Vision Research

16th International Radiance Workshop, Oregon, 22. 08, 2017

What is it? Reference Gallery Download WWW

Desktop Radiance Radiance User Interface for Windows



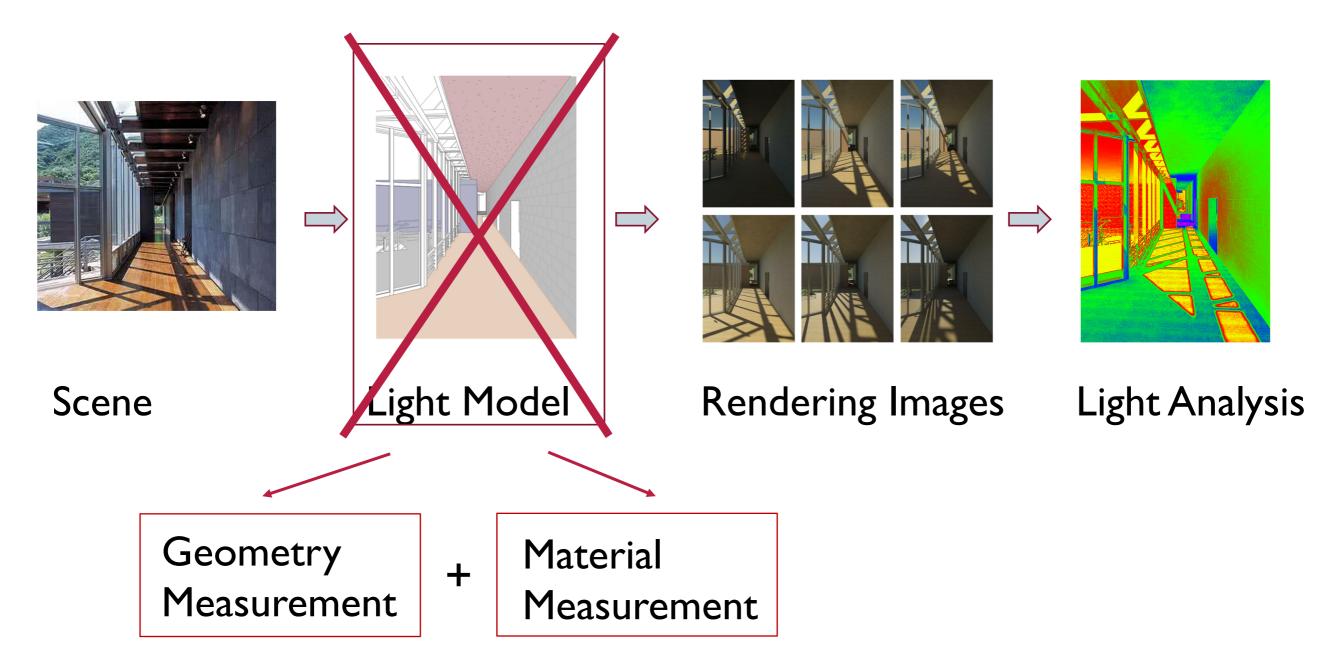


Content

- Background and Motivation
- Methodology
 - HDR imagery
 - Deep Neural Networks
- Results
- Conclusion and Future Work

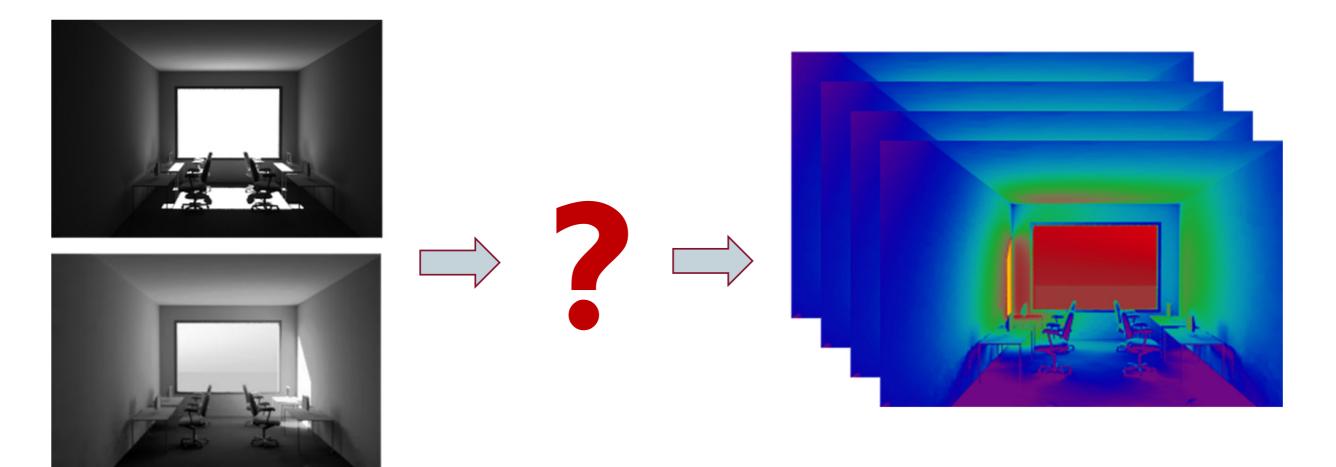
Motivation

Traditional Long-term Lighting Simulation Approach for Existing Spaces:



Motivation

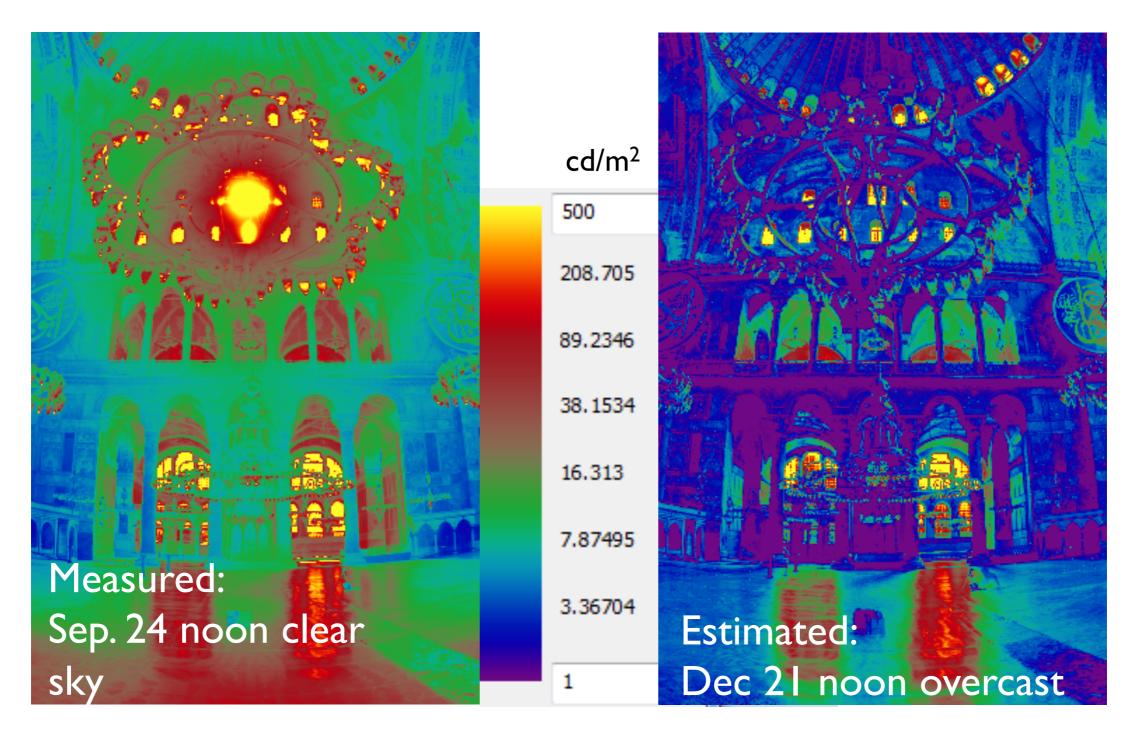
What if we can capture...



... HDR images in a limited time frame

... and use thisinformation to predictlong-term performance....

Previous work:



Short-term to Long-term Lighting Predictions

Mehlika Inanici, Dynamic Daylighting Simulations from Static High Dynamic Range Imagery Using Extrapolation and Daylight Coefficient Methodologies, Proceedings of IBPSA Conference, 2013.

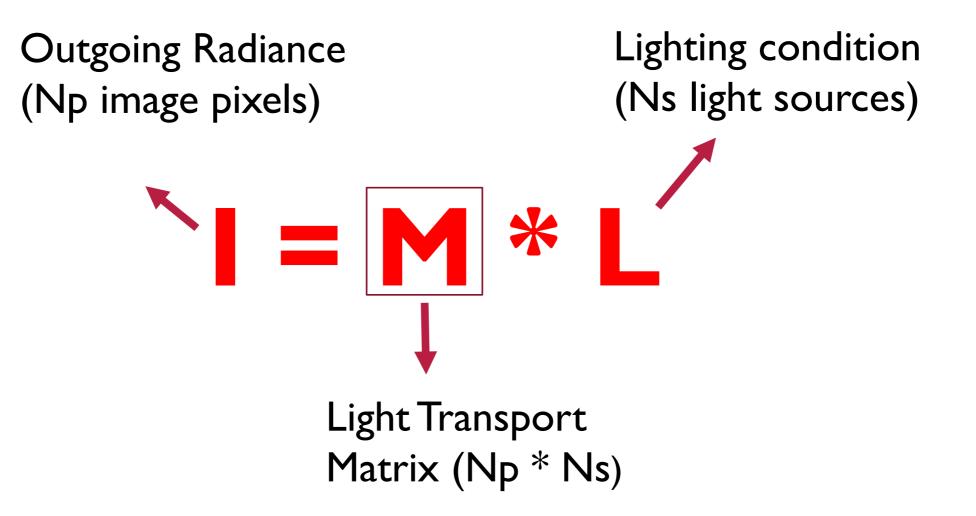
Motivation



Image Based Relighting

Peiran Ren, Yue Dong, Stephen Lin, Xin Tong, Baining Guo, Image Based Relighting Using Neural Networks, ACM SIGGRAPH, 2015.

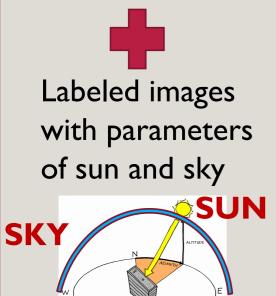
Methodology: Light Transport Matrix



Research Framework

User Input:

HDR images in a limited time frame

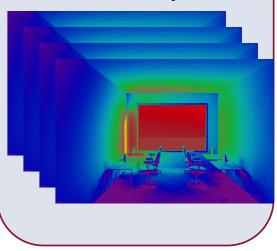


Model Light Transport Matrix Using Neural Networks:

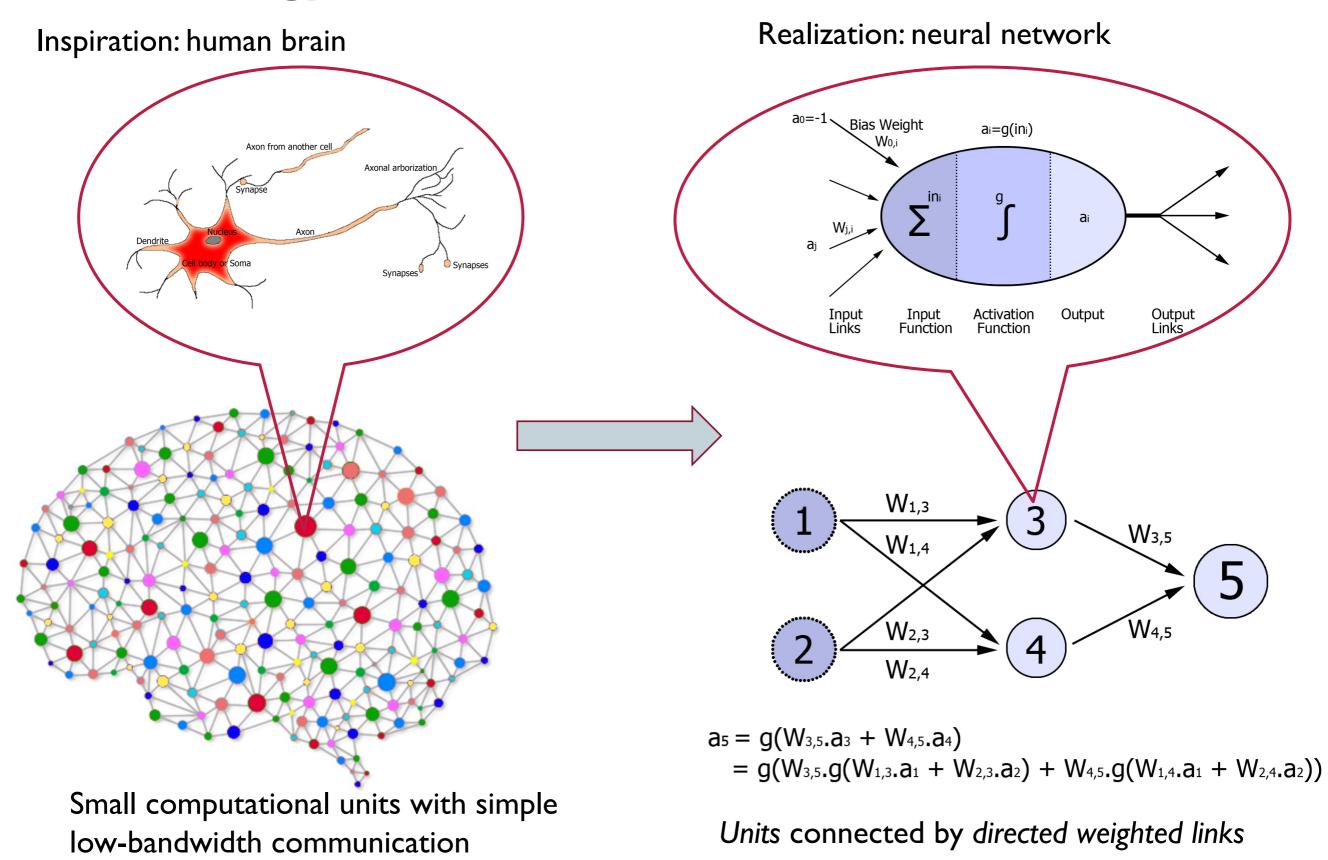


Output:

Images with luminance information for any time of the day (over a whole year) given the parameters of sun and sky



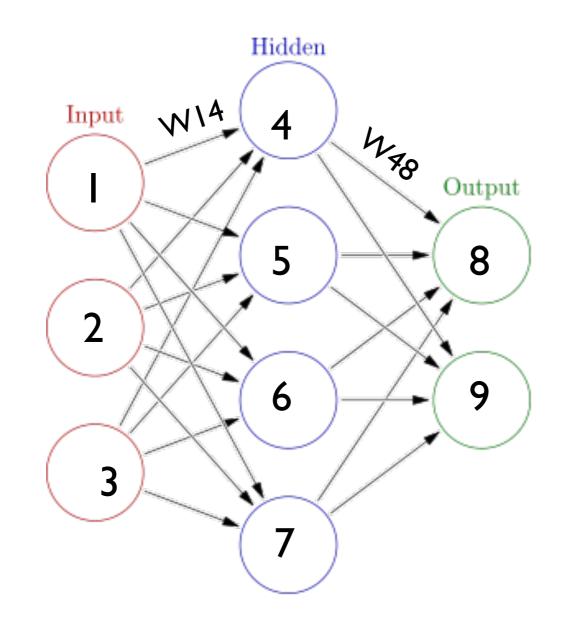
Methodology: Neural Networks



Methodology: Neural Networks Learning

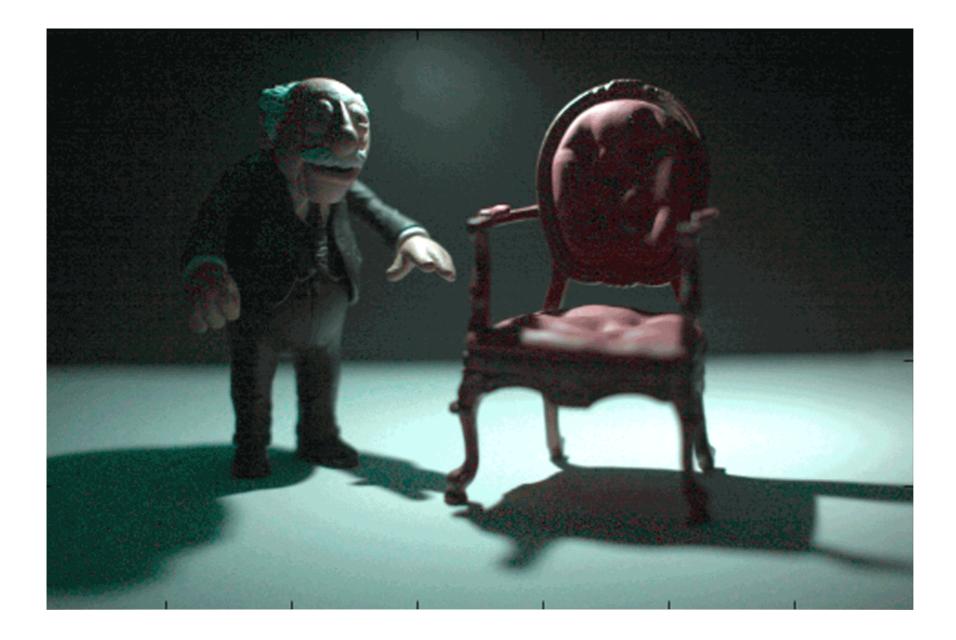
Key Idea:

Algorithms Iteratively adjusts weights to reduce error (difference between network output and target output)



Methodology – Adaptive Fuzzy Clustering

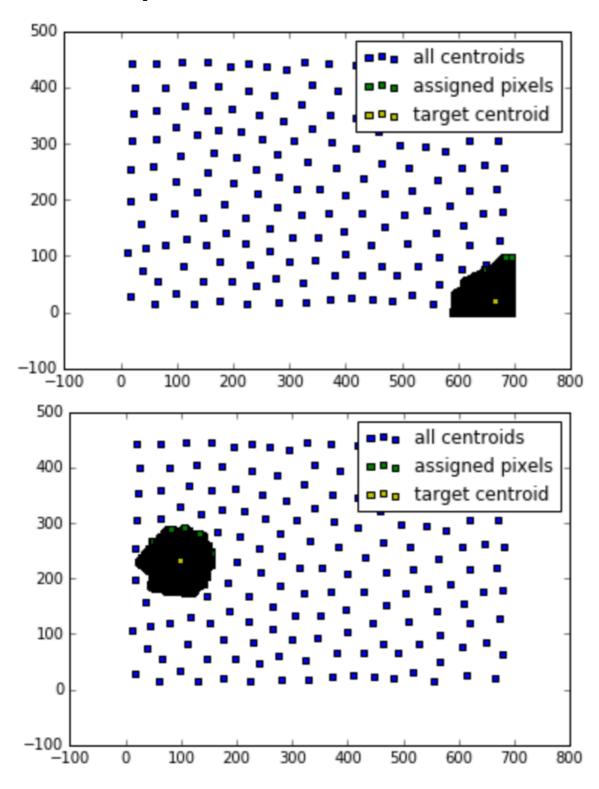
"Adaptive" Feature

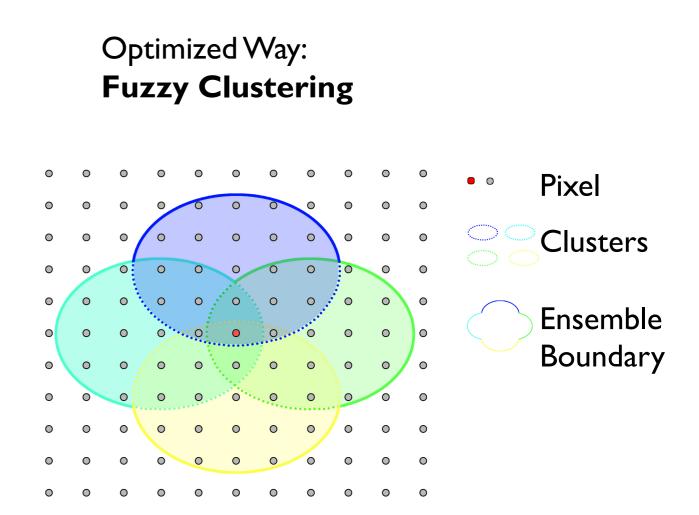


• 4 Levels of Clustering

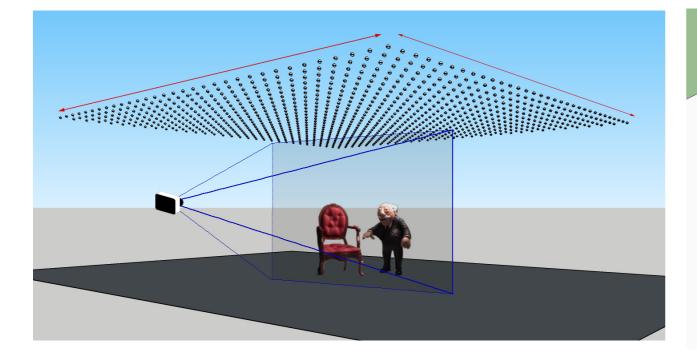
Methodology – Adaptive Fuzzy Clustering

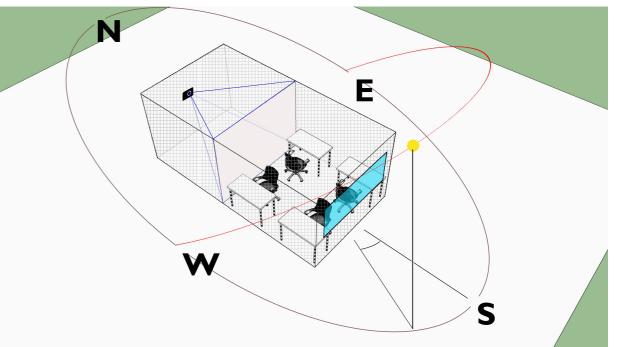
"Fuzzy" Feature





Experiment Settings: Two Groups of Data



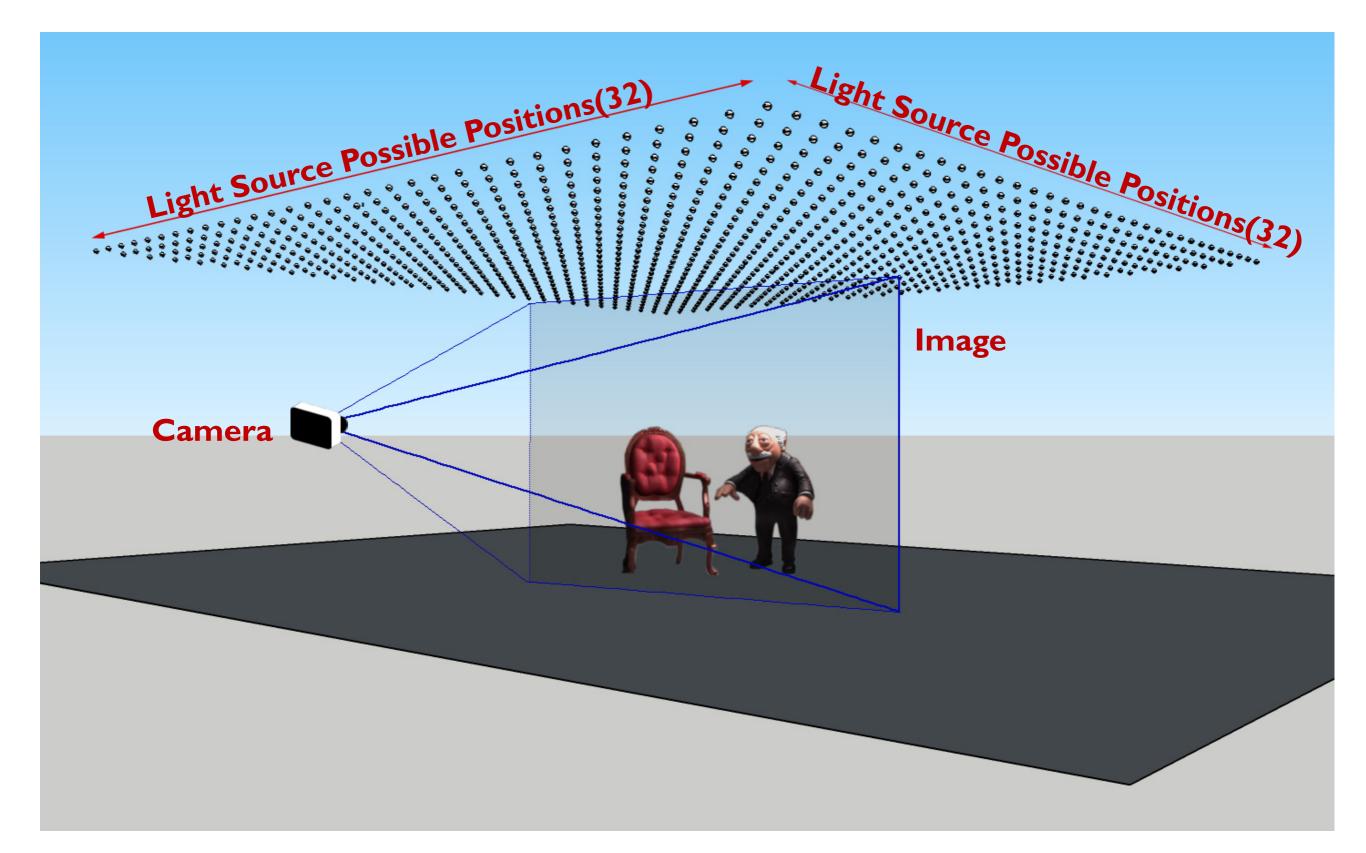


Waldorf

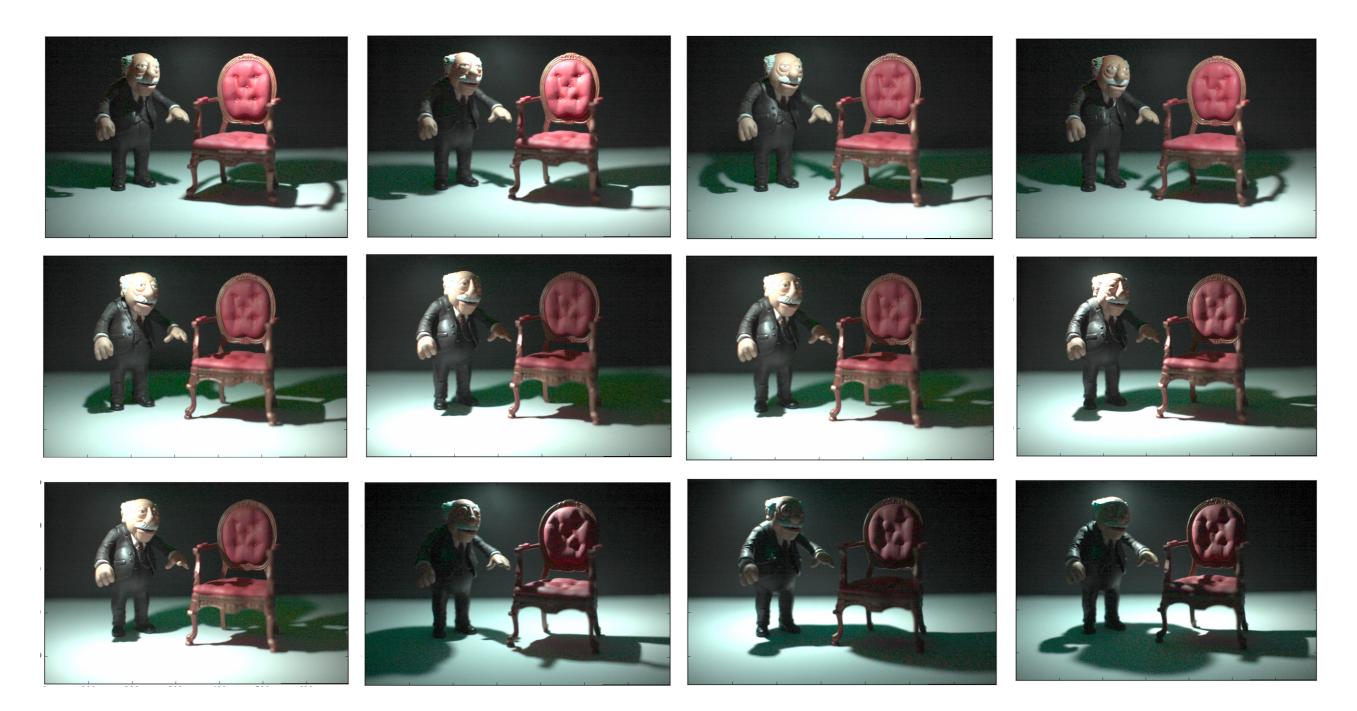
Optical Computing for Fast Light Transport Analysis <u>Matthew O'Toole</u> and <u>Kiriakos N. Kutulakos</u>. ACM SIGGRAPH Asia, 2010.

Office simulations generated using Radiance

Case I:Waldorf Data

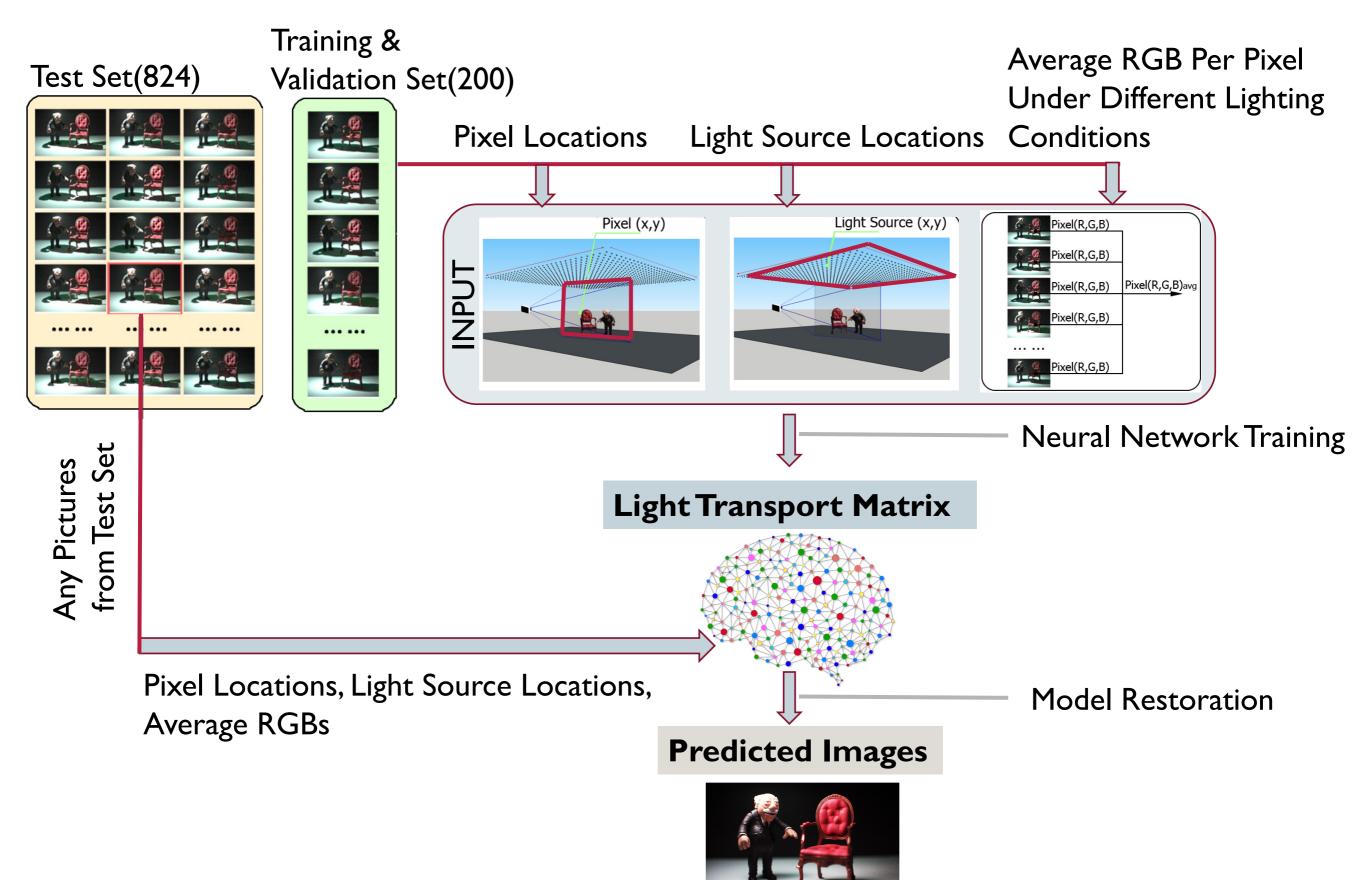


Case I:Waldorf Data



Optical Computing for Fast Light Transport Analysis <u>Matthew O'Toole</u> and <u>Kiriakos N. Kutulakos</u>. ACM SIGGRAPH Asia, 2010.

Case I: Input and Output



Original Image

Predicted Image

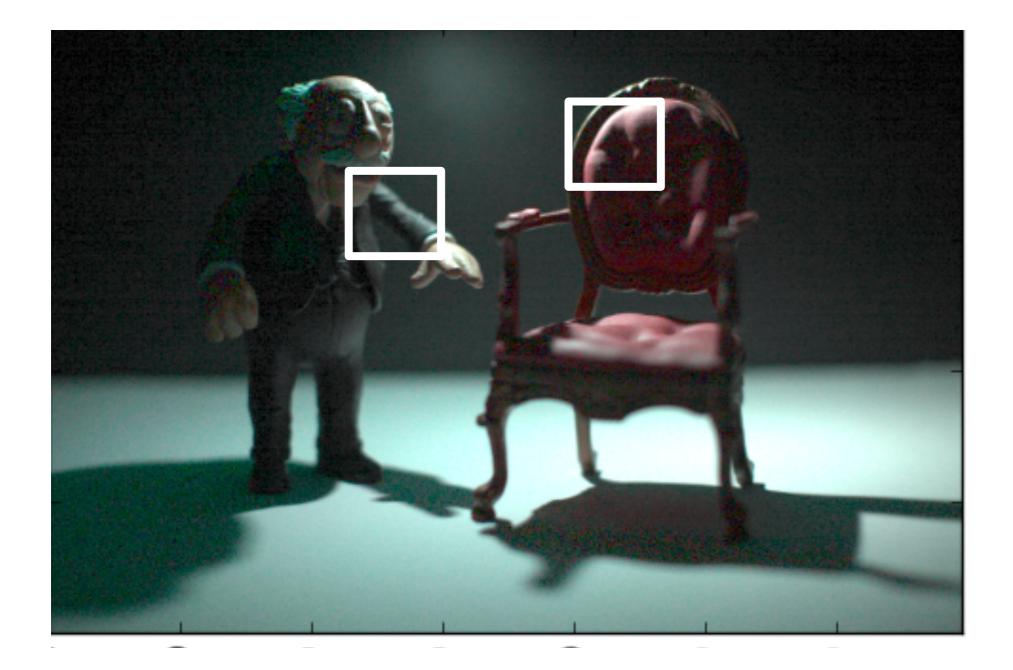
- Based on 200 out of 1024 images as input data
- Average error rate $\mathcal{E}_{average} = 0.03$

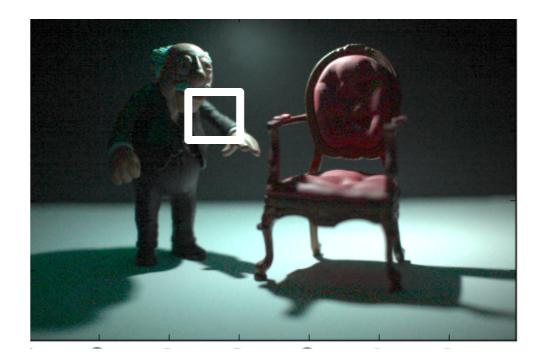
$$\varepsilon = \sqrt{\frac{\sum_{j} \left\| I_{j} - \widetilde{I}_{j} \right\|^{2}}{\sum_{j} \left\| I_{j} \right\|^{2}}}$$

Where:

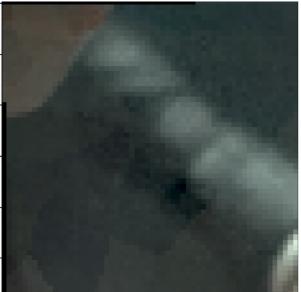
 I_j : RGB of ground truth light transport marix M(.,j)

 $\vec{I_j}$: RGB of reconstructed light transport matrix M(., j)





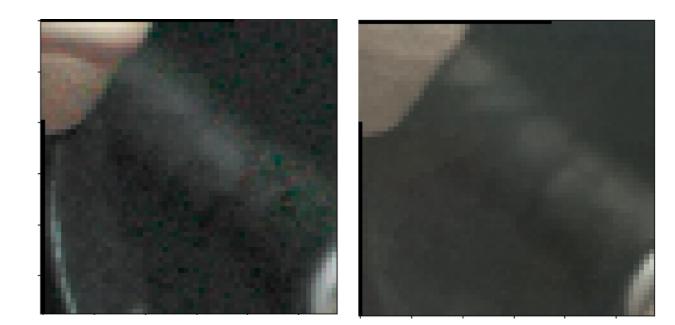
Set I



Ground truth

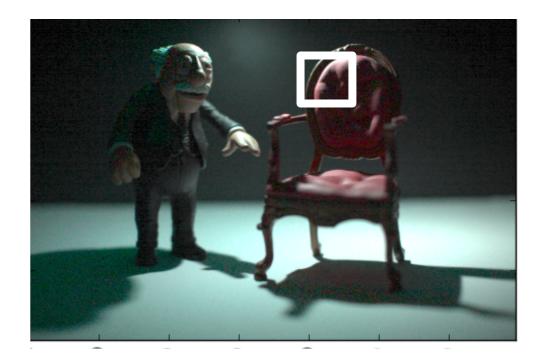
Predicted

Set 2



Ground truth

Predicted

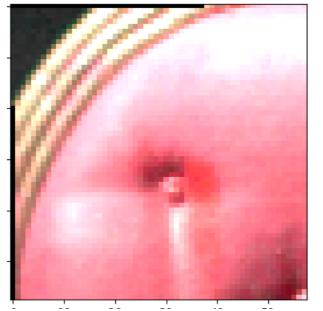


Set I

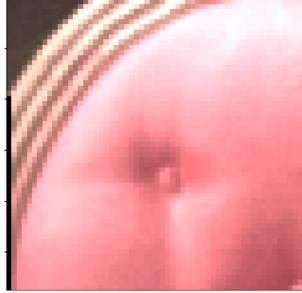
Set 2

Ground truth

Predicted



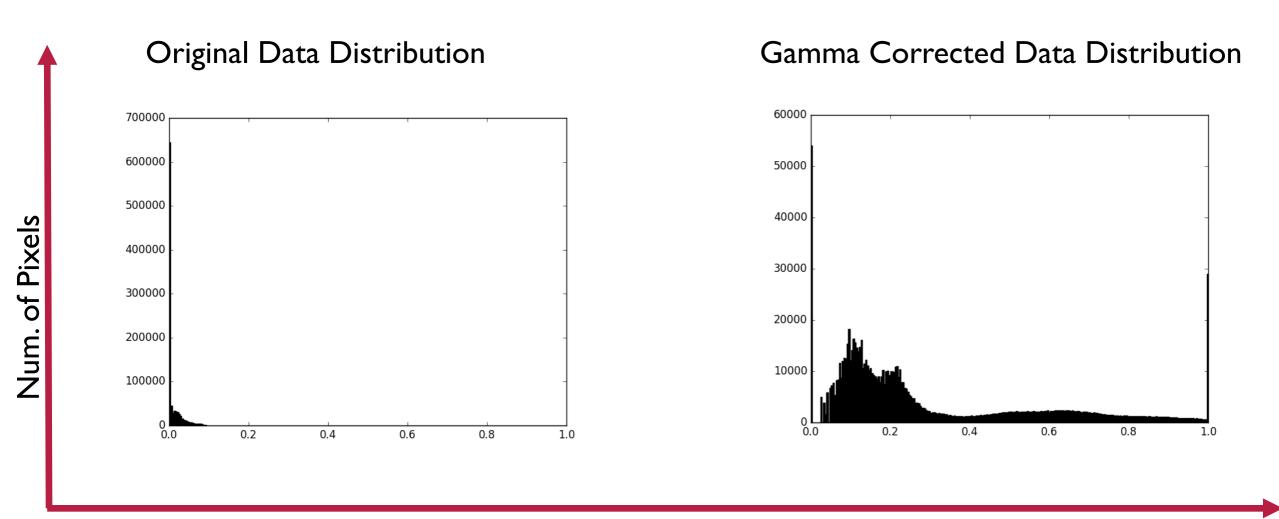
Ground truth



Predicted

Case I: Observation and Improvements

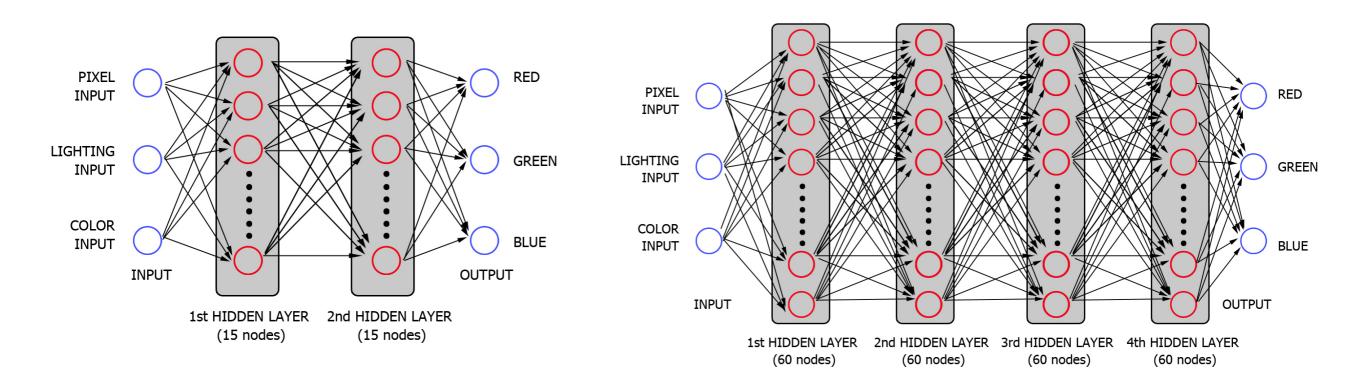
I. Pre-processing Data: Gamma Correction



Normalized Pixel Blue Value

Case I: Observation and Improvements

2. Improved Neural Network Structure



Original Neural Network

Deeper and Wider Neural Network

Original Image

* Pre-processed Images without any Post-processing

Improved Accuracy

Predicted Image

Case 2: Radiance Generated Data

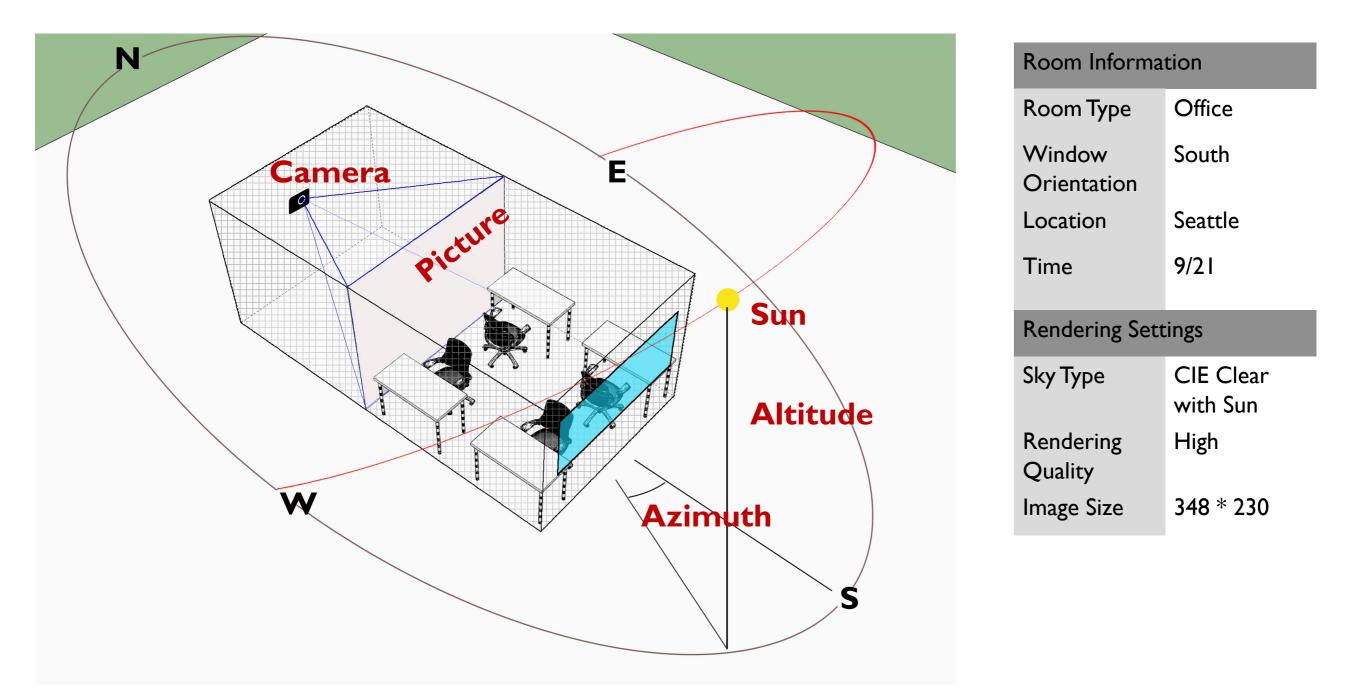
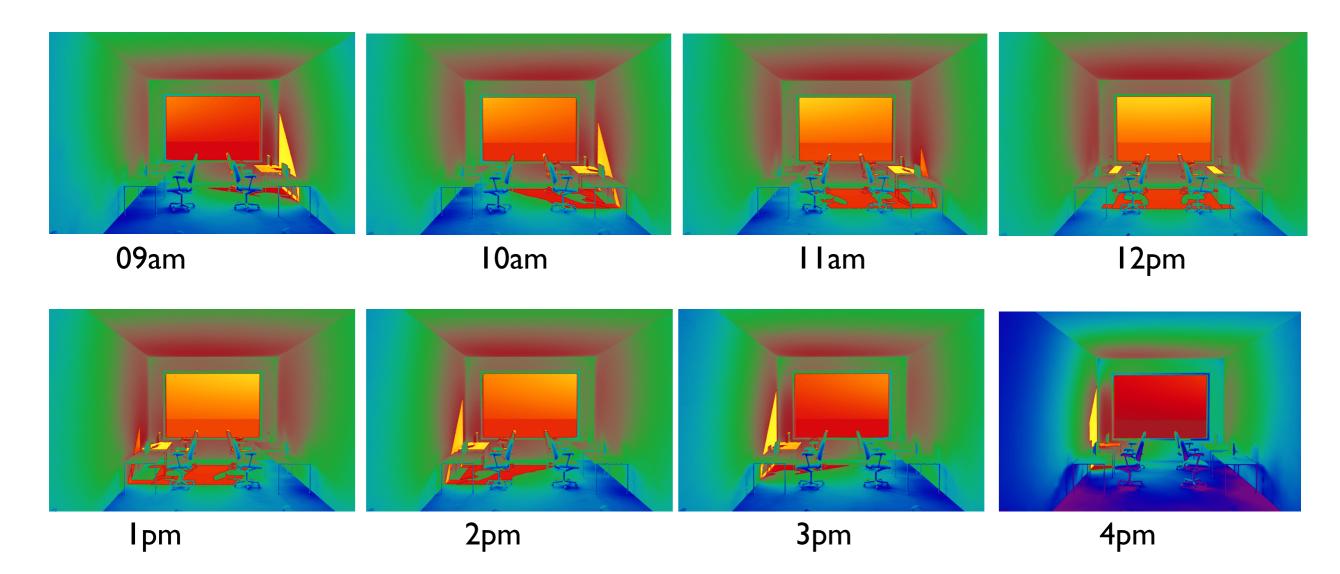


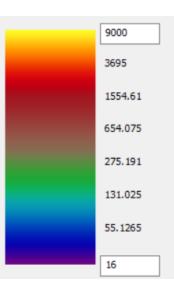
Image Frequency

Every 3 minutes, from 9am – 6pm, 200 images in total.

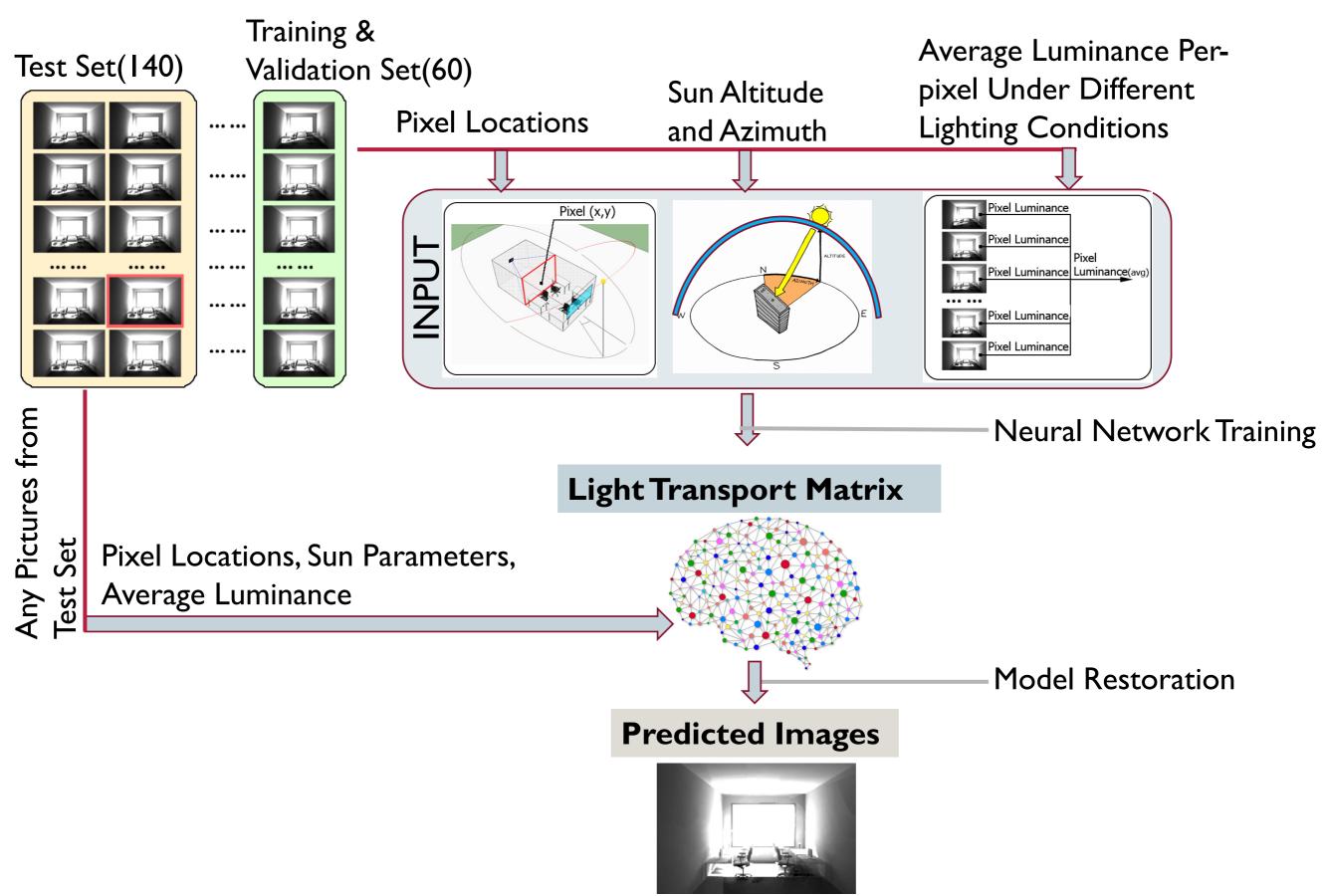
Case 2: Radiance Generated Data



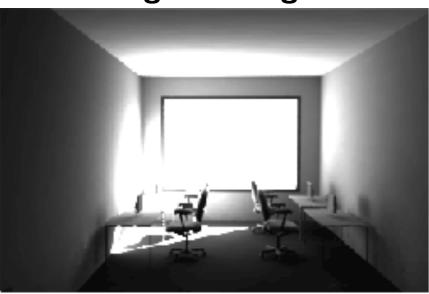
Variation in One Day On September 21st



Case 2: Input and Output



Original Image



Predicted Image

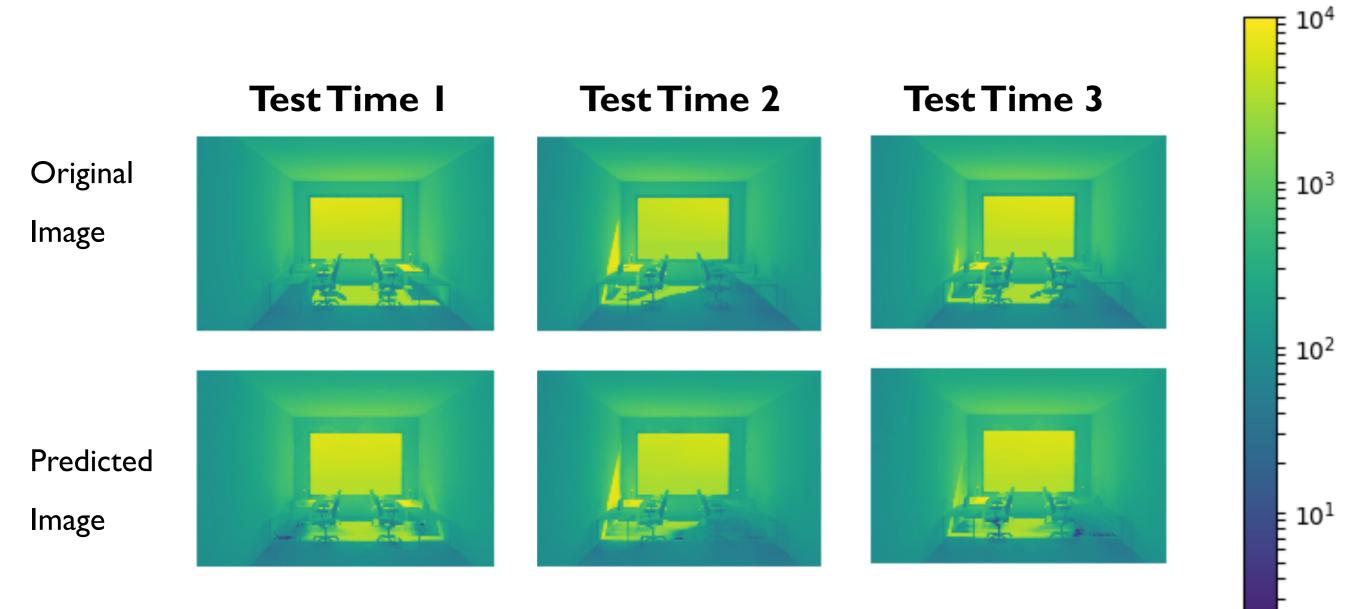


- Based on 60 out of 200 images as input data
- Average error rate $\mathcal{E}_{average} = 0.02$

$$\varepsilon = \sqrt{\frac{\sum_{j} \left\| I_{j} - \widetilde{I}_{j} \right\|^{2}}{\sum_{j} \left\| I_{j} \right\|^{2}}}$$

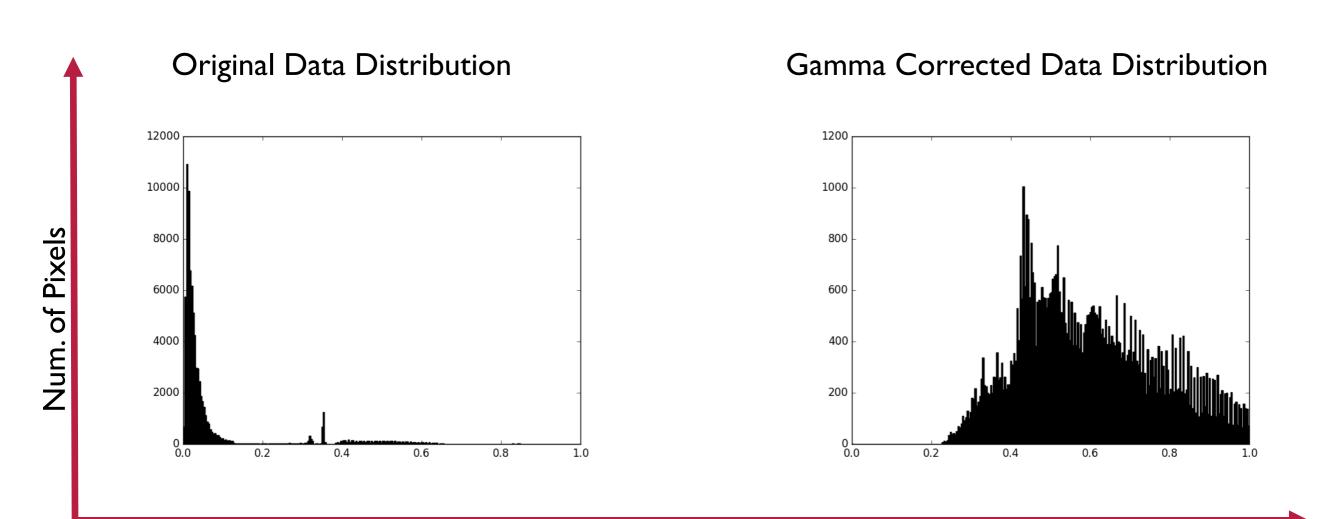
Where:

 I_j : RGB of ground truth light transport marix M(.,j) \tilde{I}_i : RGB of reconstructed light transport matrix M(.,j)



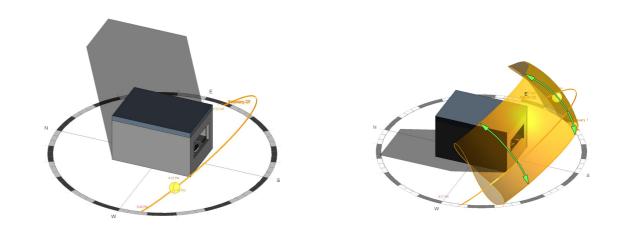
100

Case 2: Observation and Improvements



Normalized Pixel Luminance Value

Future Work



- Add sky complexity
- Test accuracy on long term predictions
- Improve the neural network models to achieve better accuracy and efficiency
- Test using real HDR captures of the scene (field test)

Conclusion

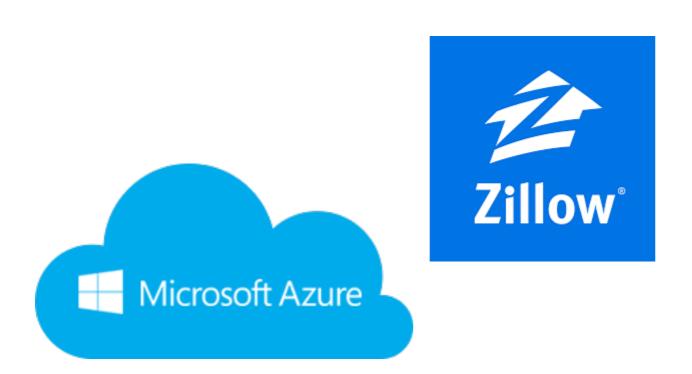
 Deep Neural Networks(DNNs) Show Promise for Architectural Lighting Research

Applications

- Evaluations of existing spaces
- Remodeling and adaptive reuse
- Can be used for complicated lighting simulations in the future

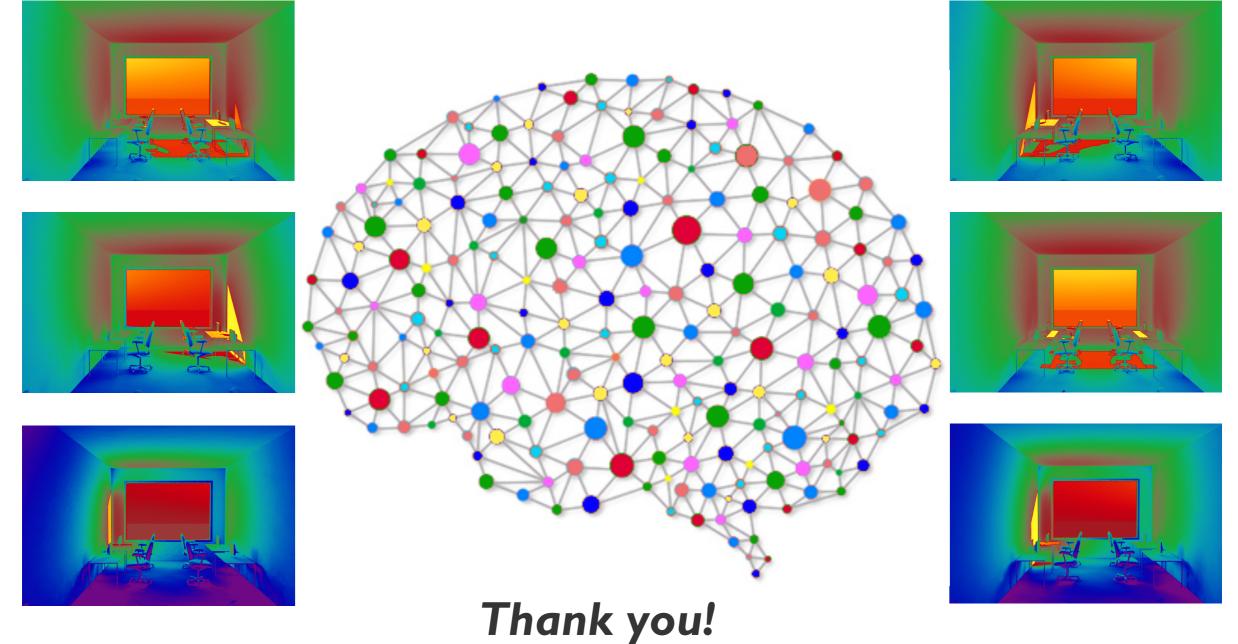
Acknowledgement

- Microsoft Azure
- Zillow Group
- National Supercomputing Center in Changsha
- IES Robert Thunen Memorial Scholarships



COMPUTING LONG-TERM DAYLIGHTING SIMULATIONS FROM HIGH DYNAMIC RANGE PHOTOGRAPHS USING DEEP NEURAL NETWORKS

EARLY RESULTS



Email: yueliu@uw.edu