Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Technik & Architektur

Comparing BSDF data from a real and a virtual goniophotometer

Andreas Noback⁺, Lars O. Grobe^{*}, Stephen Wittkopf^{*} ⁺Technische Universität Darmstadt ^{*}Competence Centre Envelopes and Solar Energy (CC-EASE), Lucerne University of Applied Science and Arts

15th International Radiance Workshop 2016

2016, Padua, Italy

Outline

- Why would you compare BSDF data from a real and a virtual goniophotometer?
- How to simulate a goniophotometer with Radiance photon mapping?
- How to compare high resolution BSDF data?
- What are the results?
- Outlook

Why would you compare BSDF data from a real and a virtual goniophotometer?

- Approve your models, quantify errors
- Understand the (unexpected) results of your measurements
- Find and quantify differences between design and production samples of optical components

Scanning goniophotometer PAB Advanced Technologies PG-2

Implement a virtual goniophotometer with Radiance pmap: Illumination system

Implement a virtual goniophotometer: Illumination system

Implement a virtual goniophotometer with Radiance map: Sensor positions

[header] 505907 #datapoints in file #format: theta phi DSF 98.04440 59.79114 1.209e-03 98.04304 59.77517 1.327e-03 98.04214 59.75856 1.782e-03 98.04059 59.74181 9.321e-04 98.03952 59.72591 1.729e-03 98.03831 59.71072 1.432e-03 98.03691 59.69475 1.333e-03 98.03551 59.67878 1.351e-03 98.03429 59.66359 1.541e-03 [...]

Images a-c: PAB Advanced Technologies Ltd.

Implement a virtual goniophotometer with Radiance pmap: Sensor sphere

Implement a virtual goniophotometer with Radiance pmap: Sample

xform -ry \$thetain -rz \$phiin

Implement a virtual goniophotometer with Radiance pmap: Sample

Implement a virtual goniophotometer with Radiance pmap: mkpmap and rtrace

mkpmap -apo photonMat -aps receiverMat -apg sample.gpm 8000000 sample.oct

rtrace \$rtrace_opts -ap 2000 -ab -1 sample.oct

Implement a virtual goniophotometer with Radiance pmap: mkpmap and rtrace

```
cat input_vectors.dat | \
rcalc -e '$1=$1; $2=$2; $3=$3; $4=-.1*$1; $5=-.1*$2; $6=-.1*$3' | \
rtrace $rtrace_opts $pmapstring sample.oct > $out.dat
```

input_vector.dat = output pg2

```
[header]
#datapoints_in_file 505907
#format: theta phi DSF
98.04440 59.79114 1.209e-03
98.04304 59.77517 1.327e-03
98.04214 59.75856 1.782e-03
98.04059 59.74181 9.321e-04
98.03952 59.72591 1.729e-03
98.03831 59.71072 1.432e-03
98.03691 59.69475 1.333e-03
[...]
```

Implement a virtual goniophotometer with Radiance pmap: Results

DSF Measurement $\theta_i = 35^{\circ}$

DSF Simulation $\theta_i = 35^{\circ}$

Implement a virtual goniophotometer with Radiance pmap: Results

How to compare high resolution BSDF data: Global and local accordance

Global accordance

$$f_{A,B} = 100 \left(1 - \sqrt{\frac{\sum_{j=1}^{n} (DSF_{A,j} - DSF_{B,j})^{2}}{\sum_{j=1}^{n} (DSF_{A,j} + DSF_{B,j})^{2}}} \right)$$

Local accordance

$$f_{j,A,B} = 100 \left(1 - \left| \frac{DSF_{A,j} - DSF_{B,j}}{DSF_{A,j} + DSF_{B,j}} \right| \right)$$

How to compare high resolution BSDF data: **Global and local accordance**

θ_i	0 °	30 °	35°	40 °	45 °	50 °
$f_{V2,V1}$	_	75%	20%	68%	65%	66%
$f_{V3,V1}$	_	84%	74%	70%	71%	74%
f_{RB}	92%	-	-	_	-	_

Global accordance

Compare high resolution BSDF data: More Results

Article

Accordance of Light Scattering from Design and De-Facto Variants of a Daylight Redirecting Component

Andreas Noback ^{1,2}, Lars O. Grobe ^{1,*} and Stephen Wittkopf ¹

- ¹ Competence Center Envelopes and Solar Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland; mail@noback.info (A.N.); stephen.wittkopf@hslu.ch (S.W.)
- ² Faculty of Architecture, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- * Correspondence: larsoliver.grobe@hslu.ch; Tel.: +41-41-349-3632

Academic Editor: Yuehong Su Received: 3 June 2016; Accepted: 12 August 2016; Published: 18 August 2016

Abstract: For the systematic development of a small-scale daylight-redirecting louver system the impact of manufacturing on light scattering characteristics has to be quantified, localized and understood. In this research, the accordance of the measured scattering distributions of a de-facto production sample *V1* with the computed predictions based on its design geometry *V2* are quantified for selected incident light directions. A metric describing the global accordance of distributions is adapted to quantify their overall difference. A novel metric of local accordance allows further analysis. A particular low global accordance between *V1* and *V2* is found for an incident elevation $\theta_i = 35^\circ$. To test the hypothesis that this result can be explained by observed geometric deviations, a simulation model *V3* replicating these is compared to the design. The hypothesis is supported by the resulting high degree of accordance. The low local accordance for individual outgoing light directions indicates geometric non-uniformity of the sample *V1*. This method has been found useful for product development and quality assurance. Beyond their application in the proposed method, global and local accordance have potential applications in all fields of light scattering measurements.

Keywords: daylight redirection; BSDF; light scattering; simulation; goniophotometry; manufacturing deviation; quality assurance

Outlook

- How important are deviations from production for daylight autonomy or glare?
- Are there alternate metrics?
- How to compare data with deviating resolution?
- What is the relation of angular resolution and components size?
- Further Applications?
- How to get reliable BSDF for DRCs: repeat measurements, change sample size, measure multiple samples?
- Model the condenser system and optical bench of PG-2: would allow smaller beams and focus points.
- Suggestions?

Thank you for your attention!

This research was supported by the Swiss National Science Foundation as part of the project "Simulation-based assessment of daylight redirecting components for energy savings in office buildings" (#147053).

andreas.noback@architektur.tu-darmstadt.de