

Developing An Efficient Solar Tube For Clear Sky Conditions Using Radiance Five Phase Method

Islam Mashaly, Khaled Nassar, Yussra Rashed
THE AMERICAN UNIVERSITY IN CAIRO

CONTENTS

Previous Research

Solar Tube Application and Designs

Designing a Solar tube for the southern Sky

Five Phase method steps

Results

Future Work

Unpainted Surfaces, low reflectivity

A PPMA panel shaped to transport the light down the light wells and then possibly into the adjacent rooms

The panel was designed using TracePro and Radiance was used to simulate the daylighting performance of the panel

A full scale model was manufactured and real life data was compared to simulated Radiance data

We developed a panel shaped as a sinwave that redirects the light downwards

The sinwave performs better than a traditional prismatic pattern but still has an occluded zone

By varying the amplitude and wavelength we can change the performance of the panel

We need to control the amount of light redirected (Watts) as well as the "fanout" angle

A school project utilizing solar tube and LED School hours in the morning only All lighting load covered by PV Generated new idea about the shape of the solar tube

Pointed Dome

Tend to be larger in dimensions and shape due to size and manufacturing limitations rather than light performance

Hemi-spherical or Flat Dome

We could find three main shapes for solar tubes prevalent in the market Some are clear but most are prismatic

Most common is the Multi-tiered Dome and largest market share

Tend to be Proprietary Designs

Primary
Installations on
Sloped Roofs for
Residential
Applications

Optimized for Northern Sky with lower solar altitudes

Design is optimized for northern sky conditions with specific solar altitudes
Reverse engineered this design as much as possible to compare it
We then will compare with this design with our design and with a clear sky dome

A NEW DESIGN FOR A SOLAR TUBE

- Goal is to design a new solar tube specifically for:
 - Makes use of the sinwave design
 - Solar altitude range common in the MENA region
 - Optimize Dynamic Measures
 - Easily manufactured

The idea is to follow the solar path and see if that provides better results. We follow the winter and summer solstice for the range of locations we are after

THE SETUP – STANDARD ROOM

RAY TRACING USING TRACE-PRO

RAY TRACING USING TRACE-PRO

BSDF GENERATED – using tracepro

RADIANCE RENDERING

Single time step rendering

Meaningless by itself but gives an idea on the design

Need to conduct a Dynamic Daylight Simulation. Enter Radiance

SIMULATION USING RADIANCE 5 PHASE METHOD

We follow the same steps as introduced by Andy last year's presentation for a three phase simulation

Then we also tried a 5-phase simulation and compared the results

5 PHASE METHOD FOR SOLAR TUBES

- $I_{5ph} = VTDS V_d T_d D_d S_d + C_{ds} S_{sun}$
- T for solar tubes = BSDF top + PIPE + BSDF bot
- T_d = BSDF top + PIPE_d + BSDF bot
- We have to consider the direct and specular light transmitted through the tube
- C_{ds}: rcontrib.exe < points.pts –I –ab 1 ad 65000 –dc 1 –dt 0 –dj 1 st 1 –ss 0 –faa –e MF:1 –f reinhart.cal –b rbin –bn Nrbins m solar full_model.oct > directsun.dsmx
- Full_model includes pipe too

VIEW MATRIX

 rfluxmtx.exe -faa -l+ -ab 6 -ac 20000 -lw 1.52e-5 -y 45 <points.pts - viewsurf.rad materials.rad room.rad > viewmatrix.vmx

For 5 phase

Black material

-ab 1

View Matrix

BSDF TRANSMITTER

 genbsdf.exe materialbsdf.rad bsdf.rad > topbsdf.xml

 rfluxmtx -n 4 -ab 12 -ad 1000 -lw 1e-4 view\bot.rad top.rad materials.rad SolarTube.rad > pipe.mtx

 genbsdf.exe materialbsdf.rad bsdf.rad > botbsdf.xml

ALTERNATIVE WAY FOR BSDF

C:\Radiance\bin
\rfluxmtx.exe -n 4 -ab 12
-ad 5000 -lw 1e-4 -c
10000 sender.rad sky
\sky.rad mat.rad sine.rad
> results\bsdfalt.txt

BSDF TRANSMITTER FOR 5 PHASE

 rfluxmtx -n 4 -ab 1 -ad 1000 -lw 1e-4 view\bot.rad top.rad materials.rad SolarTube_black.rad > pipe.mtx

-ab 1: To Remove direct and specular reflections inside the pipe

 rfluxmtx.exe -faa -c 10000 -ab 2 -ad 5000 lw 1e-4 daymtxsurf.rad sky.rad materials.rad room.rad > daylight.dmx

For 5 phase

rfluxmtx.exe -faa -c 10000
 -ab 0 -ad 5000 -lw 1e-4
 daymtxsurf.rad sky.rad
 materials.rad
 room_black.rad >
 daylight.dmx

SKY MATRIX

gendaymtx.exe cairo.weacairo.smx

For 5 phase

- gendaymtx.exe -d cairo.wea > cairo_d.smx
- gendaymtx.exe -m 1 -5 cairo.wea > cairo_m1.smx

RESULTS

We tried different designs in terms of the sinwave amplitude and period as well as other parameters

Trying to determine the best design using a trial and error approach

These SDA & ASE data and it shows variation in performance

Obviously the performance would differ if you vary the number tubes but it gives an indication

18%	18%	19%	20%
20%	19%	18%	18%
18%	24%	19%	50%
21%	19%	76%	18%
31%	92%	40%	61%
92%	19%	97%	32%
18%	37%	19%	33%
32%	19%	80%	18%
18%	19%	19%	20%
20%	20%	19%	18%

0%	0%	0%	0%
0%	0%	0%	0%
0%	1%	0%	1%
0%	0%	6%	0%
0%	9%	4%	2%
100/	00/	120/	20/
10%	0%	12%	2%
0%	2%	0%	0%
0%	2%	0%	0%

11%	12%	13%	12%
12%	12%	12%	13%
17%	8%	2%	25%
17%	18%	30%	3%
18%	53%	25%	13%
57%	13%	65%	17%
11%	16%	13%	24%
24%	15%	41%	13%
12%	10%	13%	12%
13%	12%	11%	12%

0%	0%	0%	0%
0%	0%	0%	0%
0%	0%	0%	0%
0%	0%	1%	0%
0%	0%	0%	0%
1%	0%	0%	0%
0%	0%	0%	0%
0%	0%	2%	0%
0%	0%	0%	0%
0%	0%	0%	0%

RESULTS

3 Phase Method sDA_{300lx/50%}

50%	51%	51%	51%	50%
50%	50%	51%	51%	50%
51%	49%	52%	52%	51%
50%	51%	51%	52%	51%
51%	51%	52%	52%	51%
51%	52%	50%	50%	50%
50%	51%	50%	50%	51%
50%	49%	50%	50%	49%

78%

49%	50%	50%	50%	49%
49%	49%	50%	50%	49%
51%	49%	51%	51%	51%
50%	51%	50%	51%	50%
51%	51%	51%	51%	50%
50%	51%	50%	50%	49%
50%	50%	50%	50%	50%
50%	49%	50%	49%	49%

45%

46%	46%	47%	47%	46%
46%	46%	46%	47%	46%
47%	45%	47%	48%	47%
46%	47%	46%	48%	47%
47%	47%	47%	47%	47%
46%	47%	46%	46%	45%
46%	46%	45%	45%	46%
45%	44%	45%	45%	44%

0%

FUTURE WORK: ATTEMPTS AT FABRICATION

We CNC 'ed a plastic mould out of an acrylic to form the negative of our shape

We then heated a sheet of PPMA in an oven in a controlled manner

Then we pressed it the sheet onto the mould

THE END