Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

TRANS

SOLAR

Technik & Architektur

Measurement and modeling of a daylight redirecting component

Lars O. Grobe¹, Katrin Müllner², Stephen Wittkopf¹

¹ Competence Centre Envelopes and Solar Energy (CC-EASE)

² Transsolar Energietechnik GmbH

 $13^{\rm th}$ International RADIANCE Workshop 2014 London, UK

Outline

- Application: airport design
 - Role of daylight in the design
 - Controlling irradiance and daylight with glazing
- Sample: a light redirecting mirror array
- Characteristics: available data and measurements
- Modeling: modeling strategies with Radiance
 - Measured data and the data-driven BSDF modifier
 - Geometric model and genBSDF
 - Geometric model and the Radiance Photon Map extension
- Comparison
- Conclusion

Application: Calgary Airport Expansion

IFP, International Facilities Project

Architects: DIALOG, Calgary Structure: RJC, Calgary Climate/Energy: Transsolar, Munich Mechanical / Electrical: AECOM, Calgary Opening: fall 2015

Climate- and Energy Concept

Daylight Concept: Optimize natural daylighting

reduce Energy Consumption

Daylight for perimeter zones via facades

Daylight for central areas via skylights

Climate- and Energy Concept

Sample: a light redirecting mirror array

Characteristics: available data

Available properties of the module: Glazing composition and transmission / reflection spectra of glass layers.

- Composed of three glass layers (one being laminate) and mirror inlet
- Mirror inlet geometry provided by manufacturer
- Glass properties from International Glazing Database (IGDB), Optics6

Characteristics: measurements

- Bidirectional Scatter Distribution Function BSDF($\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out}$)
- Scanning Goniophotometer by PAB at Lucerne University of Applied Sciences & Arts

Outgoing distributions of the mirror grid

Daylight redirecting structure. BSDF x cos (θ_{out}) for $\phi_{in}=0$, $\theta_{in}=10$, 20, 40 and 60 degrees.

- Visualizations of the outgoing distribution for each incident direction, interpolation by Delauny triangulation
- Projection of the transmission / reflection hemisphere of outgoing directions: ϕ_{out} as azimuth angle, θ_{out} as radius

Modeling: modeling strategies with Radiance

- The distribution does not follow assumptions by any analytical model
- Radiance offers three modeling approaches:
 - Interpolation of measured data, variable-resolution BSDF *pabopto2bsdf*
 - + Data-driven BSDF includes any information in the measurement
 - High number of measurements of varying incident direction needed
 - Computation of BSDF from geometric model of the structure *genBSDF*
 - + Replaces geometric detail in the scene by its resulting BSDF
 - Any mistakes in generating the BSDF lead to entirely wrong result
 - Direct use of geometric model with added forward pass mkpmap
 - + No preprocessing, no risk of applying BSDF with wrong orientation
 - Keeps all geometric detail in the scene

Measured data and the data-driven BSDF modifier

- Measured distributions (one for each incident direction to interpolant SIR

pabopto2bsdf -n 4 0*_*_r.dat > 000_070_r.sir pabopto2bsdf -n 4 0*_*_t.dat > 000_070_t.sir pabopto2bsdf -n 4 1*_*_r.dat > 110_180_r.sir pabopto2bsdf -n 4 1* * t.dat > 110_180_r.sir

- -n <N>: number of processes
 <.dat>: distribution in pab-format
- Interpolation and data-reduction to BSDF in XML-format

bsdf2ttree -g 7 -t 85 000_070_r.sir 000_070_t.sir \ 110_180_r.sir 110_180_t.sir > g7_t85.xml

-g <N>: initial tensor tree resolution 2^N -t <N>: remove N % of data from tensor tree when adapting resolution

Measured data and the data-driven BSDF modifier

Geometric model and genBSDF

- genBSDF can compile BSDF of either variable resolution or based on Klems

genBSDF -c 10240 -n 12 -t4 6 +f +b +geom meter \ -dim -.1 .1 -.1 .1 -.063 0 module genBSDF.rad > c 10240 t4 6.xml

- -c <N>: number of samples -t4 <N>: anistropic 4D BSDF, 2^N incident x 2^N outgoing directions -f+: front side BSDF -b+: back side BSDF -geom <unit>: units -dim <xmin> <xmax> <ymin> <ymax> <zmin> <zmax>: bounding box computation of BSDF
- Beware.... genBSDF expects specific orientation:

Geometric model and genBSDF

Geometric model and the Radiance Photon Map extension

- Most transparent approach just model the fenestration as anything else
- Use of photon ports to "guide" photons into the space of interest
- Example: 1M global, 8M caustic photons:

```
mkpmap -apo photonPortMat \
-apg pmap/global.pmap 1M -apc pmap/caustic.pmap 8M \
oct/module_pmap.oct
```

Comparison

Interpolated measurement

genBSDF

Conclusion

- Recent developments in Radiance provide us with working methods to model daylight redirecting components
- genBSDF, photon map and interpolated measured BSDF lead to qualitatively comparable results even for more complex systems
- Geometry will still be required to consider detail of glazing systems, as Radiance does not support spatially resolved BSDF
- Measurements are required to make data-driven BSDF models available and to evaluate computation-based models (genBSDF)

Thank you for your attention!

larsoliver.grobe@hslu.ch, +41 41 349 36 32 muellner@transsolar.com, +49 89 590 688 49

Supported by the Swiss National Science Foundation