Introducing spectrally resolved BSDF and other updates on the PG2 gonio-photometer

Peter Apian-Bennewitz
pab advanced technologies Ltd
info@pab.eu

13th *Radiance* workshop, London
PG2 gonio-photometer layout
large sample mount with rotation (ϕ_{in}), 1m radius

standard sample diameter up to 760mm, adjustable mounting of different sizes
closest angle 0.3° to incident direction
PG2 news 2014: high angular resolution with HeNe

comparison of solar mirrors (for DLR):

solved with 1mm aperture (1m distance), filtered, focused 7mW HeNe, special drive software

Peter Apian-Bennewitz (pab Ltd) spectral BSDF and PG2 updates
other bits of PG2 news:

- PG2 at SERIS, Singapore moved to HSLU, Switzerland
- Prof Wittkopf & crew, *CC Envelopes and Solar Energy (EASE)*
other bits of PG2 news:

- PG2 at SERIS, Singapore moved to HSLU, Switzerland
 Prof Wittkopf & crew, *CC Envelopes and Solar Energy (EASE)*

- new PG2 replaced author’s 1989 machine at Fraunhofer ISE
 Tilmann Kuhn, Bruno Bueno & crews
other bits of PG2 news:

- PG2 at SERIS, Singapore moved to HSLU, Switzerland
 Prof Wittkopf & crew, *CC Envelopes and Solar Energy (EASE)*
- new PG2 replaced author’s 1989 machine at Fraunhofer ISE
 Tilmann Kuhn, Bruno Bueno & crews
- custom measurement for clients @pab Ltd
 that keep me entertained and paid
other bits of PG2 news:

- PG2 at SERIS, Singapore moved to HSLU, Switzerland
 Prof Wittkopf & crew, *CC Envelopes and Solar Energy (EASE)*
- new PG2 replaced author’s 1989 machine at Fraunhofer ISE
 Tilmann Kuhn, Bruno Bueno & crews
- custom measurement for clients @pab Ltd
 that keep me entertained and paid
- and:
 - first working spectral measurement heads in service:
 VIS and IR
BSDF, the formal way, (with wavelength)

Definition

\[\mathcal{L}_{out}(\vec{x}_{out}, \lambda) = \Omega_{in=2\pi} \int_{\vec{x}_{in}} BSDF(\vec{x}_{in}, \vec{x}_{out}, \lambda) \mathcal{L}_{in}(\vec{x}_{in}, \lambda) \cos(\theta_{in}) \, d\Omega_{in} \]

- 4 variables: \(BSDF(\vec{x}_{in}, \vec{x}_{out}) = BSDF(\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out}) \)
 plus (optionally) wavelength \(\lambda \)

\(\mathcal{L}_{out} \) outgoing, \(\mathcal{L}_{in} \) incident radiance, \(\lambda \) wavelength, \(\Omega_{in=2\pi} \) integral over hemisphere,
\(\Omega_{in} \) inf. solid angle, see talk at 2010 workshop for more math
BSDF, the formal way, (with wavelength)

Definition

\[\mathcal{L}_{out}(\vec{x}_{out}, \lambda) = \frac{\Omega_{in}}{2\pi} \int_{\vec{x}_{in}} BSDF(\vec{x}_{in}, \vec{x}_{out}, \lambda) \mathcal{L}_{in}(\vec{x}_{in}, \lambda) \cos(\theta_{in}) \, d\Omega_{in} \]

- 4 variables: \(BSDF(\vec{x}_{in}, \vec{x}_{out}) = BSDF(\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out}) \)
 plus (optionally) wavelength \(\lambda \)
- ideal white diffuse surface: \(BSDF(\vec{x}_{in}, \vec{x}_{out}, \lambda) = \text{const} \)

\(\mathcal{L}_{out} \) outgoing, \(\mathcal{L}_{in} \) incident radiance, \(\lambda \) wavelength, \(\int_{\vec{x}_{in}} \) integral over hemisphere,

\(\Omega_{in} \) inf. solid angle, see talk at 2010 workshop for more math
BSDF, the formal way, (with wavelength)

Definition

\[\mathcal{L}_{out}(\vec{x}_{out}, \lambda) = \Omega_{in}^{=2\pi} \int_{\vec{x}_{in}} \operatorname{BSDF}(\vec{x}_{in}, \vec{x}_{out}, \lambda) \mathcal{L}_{in}(\vec{x}_{in}, \lambda) \cos(\theta_{in}) \, d\Omega_{in} \]

- 4 variables: \(\operatorname{BSDF}(\vec{x}_{in}, \vec{x}_{out}) = \operatorname{BSDF}(\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out}) \)
 plus (optionally) wavelength \(\lambda \)
- ideal white diffuse surface: \(\operatorname{BSDF}(\vec{x}_{in}, \vec{x}_{out}, \lambda) = \text{const} \)
- often applied approximation:
 \[\operatorname{BSDF}(\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out}, \lambda) = \underbrace{\operatorname{BSDF}^*(\theta_{in}, \phi_{in}, \theta_{out}, \phi_{out})}_{\text{angular part}} \rho^*(\lambda)_{\text{spectral}} \]

\(\mathcal{L}_{out} \) outgoing, \(\mathcal{L}_{in} \) incident radiance, \(\lambda \) wavelength, \(\Omega_{in}^{=2\pi} \) integral over hemisphere,
\(\Omega_{in} \) inf. solid angle, see talk at 2010 workshop for more math
How to choose a neat compact spectrometer

- quality of optics (e.g. internal stray-light, pixel cross-talk)
spectral BSDF, key parameters

How to choose a neat compact spectrometer

- quality of optics (e.g. internal stray-light, pixel cross-talk)
- quality of electronics (dynamic range, drift, noise, etc)
spectral BSDF, key parameters

How to choose a neat compact spectrometer

- quality of optics (e.g. internal stray-light, pixel cross-talk)
- quality of electronics (dynamic range, drift, noise, etc)
- mechanical mount of module
How to choose a neat compact spectrometer

- quality of optics (e.g. internal stray-light, pixel cross-talk)
- quality of electronics (dynamic range, drift, noise, etc)
- mechanical mount of module
- quality of optical coupling to PG2
spectral BSDF, key parameters

How to choose a neat compact spectrometer

■ quality of optics (e.g. internal stray-light, pixel cross-talk)
■ quality of electronics (dynamic range, drift, noise, etc)
■ mechanical mount of module
■ quality of optical coupling to PG2
■ software: embedding spectrometer into PG2 Linux control
How to choose a neat compact spectrometer

- quality of optics (e.g. internal stray-light, pixel cross-talk)
- quality of electronics (dynamic range, drift, noise, etc)
- mechanical mount of module
- quality of optical coupling to PG2
- software: embedding spectrometer into PG2 Linux control
- dealing with parameters intrinsic to the technology of compact spectrometers
spectral BSDF, key parameters

How to choose a neat compact spectrometer
- quality of optics (e.g. internal stray-light, pixel cross-talk)
- quality of electronics (dynamic range, drift, noise, etc)
- mechanical mount of module
- quality of optical coupling to PG2
- software: embedding spectrometer into PG2 Linux control
- dealing with parameters intrinsic to the technology of compact spectrometers

How to understand and check spectral BSDF
- introduces yet another variable for the BSDF
spectral BSDF, key parameters

How to choose a neat compact spectrometer

- quality of optics (e.g. internal stray-light, pixel cross-talk)
- quality of electronics (dynamic range, drift, noise, etc)
- mechanical mount of module
- quality of optical coupling to PG2
- software: embedding spectrometer into PG2 Linux control
- dealing with parameters intrinsic to the technology of compact spectrometers

How to understand and check spectral BSDF

- introduces yet another variable for the BSDF
- adding neat new display and functions to mountain program
spectral BSDF, key parameters

How to choose a neat compact spectrometer

- quality of optics (e.g. internal stray-light, pixel cross-talk)
- quality of electronics (dynamic range, drift, noise, etc)
- mechanical mount of module
- quality of optical coupling to PG2
- software: embedding spectrometer into PG2 Linux control
- dealing with parameters intrinsic to the technology of compact spectrometers

How to understand and check spectral BSDF

- introduces yet another variable for the BSDF
- adding neat new display and functions to mountain program
- new challenge to Radiance: handling spectral BSDF.
yellow, glossy paint, $\theta_{in} = 30^\circ$, @490nm, standard display
yellow, glossy paint, $\theta_{in} = 30^\circ$, @490nm, spectrum off-peak
yellow, glossy paint, $\theta_{in} = 30^\circ$, @490nm, spectrum at base of peak
yellow, glossy paint, $\theta_{in} = 30^\circ$, @490nm, spectrum at peak
spectral BSDF graph of inplane scattering

yellow, glossy paint, $\theta_{in} = 30^\circ$, $\phi_{out} = 180^\circ$
conclusion:

- PG2 is a fairly configurable machine
 (... get one today!)
- spectral BSDF: lots of fun, even for "simple" materials
- works for more complex scattering too
- inspires more questions on modelling and materials
conclusion:

- PG2 is a fairly configurable machine (... get one today!)
- spectral BSDF: lots of fun, even for "simple" materials
- works for more complex scattering too
- inspires more questions on modelling and materials

- more BSDF math at 2010 pab workshop talk
- more measurement details: http://www.pab.eu

- happy rendering
- thank you for your attention
- 256 pixel, mean pixel pitch: 3.3nm
- resolution, half-width at 1/10 max : 7nm
- pixel-wavelength function: 3rd order polynomial
- spectral range, nominal: 310nm to 1100nm