Thesis Work

Germán Molina M.Sc. Student
Advisors: Sergio Vera Ph.D, Waldo Bustamante Ph.D

Departament of Construction Engineering and Management, School of Engineering
School of Architecture
Pontificia Universidad Católica de Chile

August, 2013
Using Radiance for the assessment of the bidirectional solar properties of complex shading devices
Motivation

- BSDFs are the Complex Fenestration System’s most important properties for optical calculations (lighting and solar heat gains).
- They are required when implementing the Three or Five-phase method (lighting), EnergyPlus and ESP-r (solar heat gains).
The problem and objectives

• BSDFs are required for calculations but the assessment of them is complex.
• Without them is impossible to make a virtual evaluation of the system (simulation), thus, the impacts of it on the lighting and thermal domains will remain unknown.

The objective of this study was to evaluate genBSDF as a tool for assessing the solar BSDFs.
Assessment of bidirectional properties

Laboratory
(Andersen and de Boer 2006, Klems and Warner 1995)

Analytical models
(ISO 15099 2003, Carli inc. 2006)

Ray-tracing techniques,
(Konstantoglou et al. 2009, Andersen et al. 2005)

RAY-TRACING IS A ROBUST VIRTUAL WAY OF ASSESSING BIDIRECTIONAL PROPERTIES.

Images from windows.lbl.gov, ISO15099-2003 and Andersen, de Boer 2006; respectively
Methodology

- Results from genBSDF were compared with WINDOW 6.0 algorithm results (based on Radiosity).
- The algorithm was programmed in Scilab® since WINDOW does not allow calculations without glazing layers (only the blinds were considered).
- Combinations of four different materials (A, B, C, and D) and geometries (angles of 0°, 30°, 45° and 80°) of venetian blinds were compared. Slats were flat and zero thickness, and materials were gray (equal R, G and B colors corresponding to the solar reflectance).
- All the assumptions made in the Window 6.0 algorithm were replicated in the virtual environment. This required modifying the genBSDF script.

<table>
<thead>
<tr>
<th></th>
<th>Front Reflectance</th>
<th>Back Reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>B</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>D</td>
<td>0.1</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Results for Bidirectional

Each element of each matrix was compared.
Results for Directional
Results for Directional

![Graph showing the relationship between genBSDF and Radiosity]
Results for directional case C45
Conclusions

• genBSDF is a very accurate tool for the assessment of Bidirectional Solar Properties of shading devices.

• Everything suggests that it is possible to consider any geometry and level of specularity.

• Calculation times are around 40 minutes in a home Laptop.
A simple methodology to couple lighting and thermal simulations of spaces with controlled lighting and Complex Fenestration Systems
Motivation

• Complex fenestration systems (CFS) are often installed for providing enhanced thermal and visual environments.

• Daylight is intrinsically related with Solar Heat Gains.

• Trade-offs can be accounted only when control (automatic or occupant’s behavioural) is implemented.
Related works

- Custom analytical models (i.e. Tzempelikos & Athienitis, 2007).
- IDbuild (Petersen et al. 2010), a program focused on early stages of design. Limited to one rectangular office with one window.
- OpenStudio (Guglielmetti et al. 2011).
- Radiance + ESP-r direct run-time coupling coupling (Janak 1997).
- ESP-r + Daysim semi-coupling (Wienold et al., 2011).
Workflow based on Wienold’s work
Workflow based on Wienold’s work

Daysim (Daylight Coefficients)

Not explained in the paper

ESP-r
Daysim’s dynamic shading

“For example, in case of a single shading device group with three states, blinds up, slats horizontal and closed DAYSIM will calculate three sets of daylight coefficient and illuminance files for the blinds in all three states. In case there are two shading groups with two sets of blinds in three states each, DAYSIM will calculate five sets of DC and ILL files…”

<table>
<thead>
<tr>
<th>Fenestration Groups</th>
<th>Fenestration States</th>
<th>Number of DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

“It is worthwhile noting that using the advanced Dynamic Shading Module can be quite time consuming due to the number of ray-tracing runs required…”

from http://daysim.ning.com/

Molina, G., Vera, S., Bustamante W.
12th International Radiance Workshop, Golden CO
Proposed (ongoing) work

On the Three-phase method, only one ray-tracing precalculation is required for each fenestration group, the BTDFs are supposed to be stored on a library, and can be reused.
Proposed (ongoing) work

Replace multiple simulations and pre-simulations with the Three-phase method + Control algorithm

Implement in EnergyPlus
Requirements

• Relatively fast
• Easy to implement (use)
• Standarizable (implementable in software)
• The definition of the control algorithm must be as simple as possible.
Requirements

• Relatively fast

 Main program in C

• Easy to implement (use)

• Standarizable (implementable in software)

• The definition of the control algorithm must be relatively simple and general.

Control scripts written in Lua
Considerations

- Control is usually done using a few sensors that are not on any workplane.
- It is advisable to separate “workplane” sensors from “control” sensors, and create the schedules using smaller DC (or V and D) matrices.
Considerations

- V and D for control sensors
- mkSchedule
- Schedule
 - Thermal Simulation (ESP-r, EnergyPlus)
 - Lighting Simulation (Radiance, Daysim?)
Proposed program: mkSchedule

Energy Plus weather file → Interpolate for sub-hourly simulations → State variables

→ Calculate the Perez et al. Sky vector → Calculate lighting levels using the 3-phase method

→ Control Algorithm → New state variables

→ Schedule

On each time-step
Proposed program: mkSchedule

Energy Plus weather file

Interpolate for sub-hourly simulations

State variables

Calculate lighting levels using the 3-phase method

Control Algorithm

New state variables

On each time-step

Schedule

Molina, G., Vera, S., Bustamante W. 12th International Radiance Workshop, Golden CO
mkSchedule inputs

- V and D matrices of the windows on the sensors
- Shading positions (BSDFs of the different positions of the shading devices)
- Luminaires contributions at full power
- Lua control script
- Energy Plus Weather File
- Latitude and Longitude of location (overwrite the EPW file)
mkSchedule inputs

```
mkSchedule
-f Santiago.epw
-m 4
-n 500
-x 2 -l 2
-L LMX%d.lmx
-V V-Control-%d.vmx
-T T%d.xml
-w 2
-D D-%d.dmx
-u testLua.lua

> FILE.txt
```

- EnergyPlus weather file
- # of sky bins
- Lines of the EPW to simulate
- # of sensors / luminaires
- Name format of the luminaires
- Name format of the VMX
- Name format of the BSDF
- # of windows
- Name format of the DMX
- Lua control script
- Schedule file
mkSchedule inputs

mkSchedule
-f Santiago.epw
-m 4
-n 500
-x 2 -l 2
-L LMX%d.lmx
-V V-Control-%d.vmx
-T T%d.xml
-w 2
-D D-%d.dmx
-u testLua.lua

> FILE.txt

LMX1.lmx and LMX2.lmx are the contributions of the different luminaires sets at full power.
mkSchedule possible control information

- Illuminance in sensors
- Exterior dry-bulb temperature
- Solar positions angles
- Time of the day
- Any information inside the EnergyPlus weather file
- Derived information from these parameters
Limitations

- Still Semi-coupled: Cannot control using internal dry-bulb temperature.
- Glare-based control has not been implemented (out of scope).

- Work still in progress
- The first test has been successful, but the program requires modifications
Aknowledgements

• Research grant FONDECYT 1111001
• Research grant CONICYT/FONDAP 15110020, Center for Urban Sustainable Development (CEDEUS)
• The department of Building, Civil and Environmental Engineering Concordia University
• Andy McNeil, Greg Ward, Jacob Jonsson, Rob Guglielmetti and Simon Vodanovic
• Radiance mailing list
References

References

References

References

References

